Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 2
Article Contents

Liang Yannan, Wang Hainan, Zhou Ruoqian, Zhang Haijun. Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029
Citation: Liang Yannan, Wang Hainan, Zhou Ruoqian, Zhang Haijun. Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029

Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation

More Information
  • As the carrier in the flotation process, bubble motion features have a significant impact on the flotation efficiency. The regulation of bubble characteristics is an effective method to enhance the flotation process. In recent years, microbubble flotation has received extensive attention. This paper reviews the advance of microbubble flotation from microbubble generation, microbubble features regulation and mineralization mechanism. The foaming principles and applications of jet foaming, microporous medium foaming, dissolved gas foaming, ultrasound foaming and electrolysis foaming are introduced. The regulation mechanism of microbubble size is analyzed from surfactants, electrolytes and energy input. The regulation mechanism of microbubble movement characteristics is discussed based on the bubble shape and rising velocity. Interaction mechanism of particles and microbubbles is fully analyzed from particle-bubble collision, attachment and detachment. Finally, the development of microbubble regulation and action mechanism is prospected.

  • 加载中
  • [1] Zongfu Dai, Daniel Fornasiero, John Ralston. Particle Bubble Collision Models: A Review[J]. Advances in Colloid and Interface Science, 2000, 85:231-256. doi: 10.1016/S0001-8686(99)00030-5

    CrossRef Google Scholar

    [2] 郭晟. 微泡生成机理及微泡发生器的优化设计研究[D]. 昆明: 昆明理工大学, 2006.

    Google Scholar

    GUO S. Research on microbubble generation mechanism and optimized design of microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.

    Google Scholar

    [3] 朱宏政, 王海艳, 王海楠, 等. 机械搅拌式浮选装置中气泡粒径分布规律[J]. 煤炭学报, 2018, 43(4):1140-1145.

    Google Scholar

    ZHU H Z, WANG H Y, WANG H N, et al. Bubble size distribution in a mechanical flotation device[J]. Journal of China Coal Society, 2018, 43(4):1140-1145.

    Google Scholar

    [4] 李小兵, 郭杰, 周晓华, 等. 浮选气泡制造技术进展[J]. 选煤技术, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011

    CrossRef Google Scholar

    LI X B, GUO J, ZHOU X H, et al. Development of floatation bubble manufacturing technology[J]. Coal Preparation Technology, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011

    CrossRef Google Scholar

    [5] 韩子伟. 组合微泡发生器发泡性能研究[D]. 昆明:昆明理工大学, 2016.

    Google Scholar

    HAN Z W. Study on foaming performance of combined microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.

    Google Scholar

    [6] 李浙昆, 张宗华, 郭晟, 等. 微泡浮选射流气泡发生器的研究[J]. 矿业研究与开发, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021

    CrossRef Google Scholar

    LI Z K, ZHANG Z H, GUO S, et al. Research on jet bubble generator for microbubble floatation[J]. Mining Research and Development, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021

    CrossRef Google Scholar

    [7] 邵延海. 浮选柱气泡发生器充气性能及应用研究[D]. 长沙: 中南大学, 2004.

    Google Scholar

    SHAO Y H. Study on aeration performance and application of flotation column bubble generation[D]. Changsha: Central South University, 2004.

    Google Scholar

    [8] 徐振华. 气浮工艺中金属微孔管制造微气泡的研究[D]. 成都: 四川大学, 2006.XU Z H.

    Google Scholar

    Research on microbubbles generation by metal microporous tube in flotation technology[D]. Chengdu: Sichuan University, 2006.

    Google Scholar

    [9] 程敏. 堇青石板式陶瓷膜微泡发生器的研究[D]. 贵阳:贵州大学, 2019 .

    Google Scholar

    CHENG M. Study on cordierite plate ceramic membrane microbubble generator[D]. Guiyang: Guizhou University, 2019.

    Google Scholar

    [10] 黄光耀, 陈雯, 冯其明, 等. 浮选柱内微孔发泡器发泡性能研究[J]. 金属矿山, 2010(10):129-133.

    Google Scholar

    HUANG G Y, CHEN W, FENG Q M, et al. Foaming performance of microporous foaming generator[J]. Metal Mine, 2010(10):129-133.

    Google Scholar

    [11] 高莹, 王晖, 鲁双, 等. 溶气浮选法处理含铬(Ⅵ)废水的研究[J]. 应用化工, 2009, 38(10):1469-1472.

    Google Scholar

    GAO Y, WANG H, LU S, et al. Research on removal of Cr(Ⅵ) from waste-water by using dissolved-air flotation method[J]. Applied Chemical Industry, 2009, 38(10):1469-1472.

    Google Scholar

    [12] 刘殿文, 尚旭, 方建军, 等. 微细粒氧化铜矿物浮选方法研究[J]. 中国矿业, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024

    CrossRef Google Scholar

    LIU D W, SHANG X, FANG J J, et al. Flotation method research on fine-particle copper oxide minerals[J]. China Mining Magazine, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024

    CrossRef Google Scholar

    [13] Matis K A, 刘明鉴. 溶气浮选和电解浮选[J]. 国外金属矿选矿, 1990:1-15.

    Google Scholar

    MATIS K A, LIU M J. Dissolved air flotation and electrolytic flotation[J]. Metallic Ore Dressing Abroad, 1990:1-15.

    Google Scholar

    [14] Kentish S, Ashokkumar M. The physical and chemical effects of ultrasound. in ultrasound technologies for food and bioprocessing, Feng, H, Barbosa-Canovas G, Weiss J. Eds. Springer New York: New York, NY, 2011; pp 1-12.

    Google Scholar

    [15] 欧乐明, 耿少沛, 冯其明. 超声波发泡及对气含率的影响[J]. 有色金属科学与工程, 2015, 6(5):80-84.

    Google Scholar

    OU L M, GENG S O, FENG Q M. Ultrasonic foaming and its effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5):80-84.

    Google Scholar

    [16] Jiménez C, Talavera B, Sáez C, et al. Study of the production of hydrogen bubbles at low current densities for electro-flotation processes[J]. Journal of Chemical Technology and Biotechnology, 2010, 85:1368-1373. doi: 10.1002/jctb.2442

    CrossRef Google Scholar

    [17] Glembotsky V A, Mamakov A A, Romanov A M, et al. Selective separation of fine mineral slimes using method of electric flotation[J]. Proceedings of 11th International Mineral Processing Congress Cagliari, 1975, 561–582.

    Google Scholar

    [18] 陈金銮, 万晶, 施汉昌. 电解浮选反应器设计研究[C]. 2006新工艺新设备在自来水厂, 污水处理厂, 回用水厂, 垃圾处理场的应用研讨会论文集, 2006.

    Google Scholar

    CHEN J L, WAN J, SHI H C. Research on the design of electrolytic flotation reactor[C]. 2006 Proceedings of the Seminar on the Application of New Technology and New Equipment in Waterworks, Sewage Treatment Plants, Recycled Water Plants and Waste Disposal Plants, 2006.

    Google Scholar

    [19] 朱超英, 易峦, 程建国, 等. 新型电解微泡浮选柱的研制与试验研究[J]. 矿冶工程, 2012, 32(8):46-48.

    Google Scholar

    ZHU C Y, YI L, CHENG J G, et al. Development and experimental study of a new electrolytic microbubble flotation column[J]. Mining and Metallurgical Engineering, 2012, 32(8):46-48.

    Google Scholar

    [20] 薛伟江. 环保型直通孔结构多孔陶瓷的制备与性能[D]. 天津: 天津大学, 2009.

    Google Scholar

    XUAN W J. Preparation and properties of porous ceramics with features of eco- friendly and unidirectional aligned pores[D]. Tianjin: Tianjin University, 2009.

    Google Scholar

    [21] Tan Y H, Finch J A. Frother Structure-property Relationship: Effect of Alkyl Chain Length in Alcohols and Polyglycol Ethers on Bubble Rise Velocity[J]. Minerals. Engineering, 2016, 95:14-20. doi: 10.1016/j.mineng.2016.05.012

    CrossRef Google Scholar

    [22] Zhu H, Zhu J, Alejandro L V, et al. Effect of Reagent Blend on Characteristics and Dispersion of Bubbles in A Flotation Column[J]. Journal of China Coal Society, 2019, 44:1586-1592.

    Google Scholar

    [23] Craig V S J, Ninham B W, Pashley R M. Effect of Electrolytes on Bubble Coalescence[J]. Nature, 1993, 364:317-319. doi: 10.1038/364317a0

    CrossRef Google Scholar

    [24] Lessard R R, Zieminski S A. Bubble Coalescence and Gas Transfer in Aqueous Electrolytic Solutions[J]. Industrial and Engineering Chemistry Fundamentals, 1971, 10(2):260-269. doi: 10.1021/i160038a012

    CrossRef Google Scholar

    [25] 张雪勤, 蔡怡, 杨亚江. 两性离子/阴离子表面活性剂复配体系协同作用的研究[J]. 胶体与聚合物, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001

    CrossRef Google Scholar

    ZHANG X Q, CAI Y, YANG Y J. Study of cooperative effect of mixed system of zwitterionic and anionic surfactants[J]. Chinese Journal of Colloid and Polymer, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001

    CrossRef Google Scholar

    [26] Gorain B K, Franzidis J P, Manlapig E V. Studies on Impeller Type, Impeller Speed and Air Flow Rate in An Industrial Scale Flotation Cell—Part 1: Effect on Bubble Size Distribution[J]. Minerals. Engineering, 1995, 8:615-635. doi: 10.1016/0892-6875(95)00025-L

    CrossRef Google Scholar

    [27] Zhu H, Valdivieso L A, Zhu J, et al. A Study of Bubble Size Evolution in Jameson Flotation Cell[J]. Chemical Engineering Research and Design, 2018, 137:461-466. doi: 10.1016/j.cherd.2018.08.005

    CrossRef Google Scholar

    [28] 惠恒雷. 射流发泡制造微气泡技术试验研究[D]. 青岛:中国石油大学(华东), 2011.

    Google Scholar

    HUI H L. Experimental study on technology of micro-bubble jet foam[D]. Qingdao: China University of Petroleum (Huadong), 2011.

    Google Scholar

    [29] 贾彦. 起泡剂作用下单气泡运动特性实验研究[D]. 徐州: 中国矿业大学, 2016.

    Google Scholar

    JIA Y. Experimental study of surfactant effect on motion characteristic of single bubble[J]. Xuzhou: China University of Mining and Technology, 2016.

    Google Scholar

    [30] 王军超, 李国胜, 韩加展, 等. 起泡剂对溶液中气泡形状和速度的影响研究[J]. 煤炭工程, 2016, 48(9):142-145.

    Google Scholar

    WANG J C, LI G S, HAN J Z, et al. Study on bubble shape and velocity in different frother solutions coal[J]. Engineering, 2016, 48(9):142-145.

    Google Scholar

    [31] Wu M, Gharib M. Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water[J]. Physics of Fluids, 2002, 14(7):49-52. doi: 10.1063/1.1485767

    CrossRef Google Scholar

    [32] David Reay, Ratcliff G A. Removal of Fine Particles from Water by Dispersed Air Flotation: Effects of Bubble Size and Particle Size on Collection Efficiency[J]. The Canadian Journal of Chemical Engineering, 2009, 51(2):178-185.

    Google Scholar

    [33] Yoon R H, Luttrell G H. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1):101-122.

    Google Scholar

    [34] Flint L R, Howarth W J. The Collision Efficiency of Small Particles with Spherical Air Bubbles[J]. Chemical Engineering Science, 1971, 26(8):1155-1168. doi: 10.1016/0009-2509(71)87002-1

    CrossRef Google Scholar

    [35] 张世杰. 煤泥浮选过程中颗粒与气泡碰撞, 吸附规律研究[D]. 北京: 中国矿业大学(北京), 2015.

    Google Scholar

    ZHANG S J. Study on collision and attachment behavior between particle and bubble in coal slime flotation[D]. Beijing: China University of Mining and Technology (Beijing), 2015.

    Google Scholar

    [36] Hassanzadeha A, Hassasb B V, Kouachic S, et al. Effect of Bubble Size and Velocity on Collision Efficiency in Chalcopyrite Flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498:258-267.

    Google Scholar

    [37] Lee J E, Lee J K. Effect of microbubbles and particle size on the particle collection in the column flotation[J]. Korean Journal of Chemical Engineering, 2002, 19(4):703-710. doi: 10.1007/BF02699321

    CrossRef Google Scholar

    [38] Yoon R, Luttrell G. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5:101-102. doi: 10.1080/08827508908952646

    CrossRef Google Scholar

    [39] 罗德里古斯R T, 李长根, 崔洪山. 溶解气体浮选法(DAF)在矿业和矿物加工中的潜在应用[J]. 国外金属矿选矿, 2007:4-10.

    Google Scholar

    RODRIGUES R T, LI C G, CUI H S. Potential application of dissolved gas flotation (DAF) in mining and mineral processing[J]. Metallic Ore Dressing Abroad, 2007:4-10.

    Google Scholar

    [40] Finch, Dobby. Column flotation[M]. Pregamon Press, 1991.

    Google Scholar

    [41] 许光前. 基于静态矿浆/泡沫界面区的气泡-颗粒脱附机理研究[D]. 徐州: 中国矿业大学, 2018.

    Google Scholar

    XU G Q. Mechanism of bubble-particle detachment at the static pulp/froth interface[D]. Xuzhou: China University of Mining and Technology, 2018.

    Google Scholar

    [42] Bournival G, de Oliveira e Souza L, Ata S, et al. Effect of Alcohol Frothing Agents on the Coalescence of Bubbles Coated with Hydrophobized Silica Particles[J]. Chemical Engineering Science, Elsevier, 2015, 131:1-11. doi: 10.1016/j.ces.2015.03.036

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(2713) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint