Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 1
Article Contents

Chen Shu, Shu Rongbo, Min Gang, Liu Kang, Yuan Huilin, Cheng Rong. High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009
Citation: Chen Shu, Shu Rongbo, Min Gang, Liu Kang, Yuan Huilin, Cheng Rong. High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009

High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area

  • The current mining mode of rare earth mines in southern China is still the in-situ leaching mode. For this mining mode, the fractured structures, underground rivers, karst and other unfavorable geological bodies developed underground in the mine will seriously reduce the recovery rate of the leaching liquid. The leaching liquid leaking along the bad geological bodies will cause serious pollution to the environment, so it is of great significance to investigate the development status of the bad underground geological bodies in the mine. Based on the stratum distribution and structural characteristics of the C2 mining area of a rare earth mine in the south, this article first carried out high-density electrical method parameter experiments, selected appropriate measurement parameters and the Wenner-Schlumberg 2 device measurement mode, and completed the high-density of 4 survey lines Electrical measurement; the hidden electrical structure model of the study area is obtained through inversion calculation, the thickness of the weathered layer (stratum rich in rare earth minerals) and the spatial distribution characteristics of the hidden fault structure are delineated, the results are interpreted and the drilling of the study area layout The results are consistent. The exploration results provide important reference materials for the reserve evaluation of ionic rare earth ore, the plugging of seepage channels, and the layout of liquid collection roadways.

  • 加载中
  • [1] 周贺鹏, 胡洁. 离子型稀土矿化学溶浸影响因素及其调控[J]. 矿产综合利用, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032

    CrossRef Google Scholar

    ZHOU H P, HU J. Influencing factors and control of chemical leaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032

    CrossRef Google Scholar

    [2] 詹光, 黄草明, 朱景和, 等. 南方离子型稀土冶炼废水治理现状与展望[J]. 矿产综合利用, 2018(3):18-25. doi: 10.3969/j.issn.1000-6532.2018.03.003

    CrossRef Google Scholar

    ZHAN G, HUANG C M, ZHU J H, et al. The status quo and prospect of the treatment of ionic rare earth smelting wastewater in southern China[J]. Multipurpose Utilization of Mineral Resources, 2018(3):18-25. doi: 10.3969/j.issn.1000-6532.2018.03.003

    CrossRef Google Scholar

    [3] 张博, 宁阳坤, 曹飞, 等. 世界稀土资源现状[J]. 矿产综合利用, 2018(4):7-12.

    Google Scholar

    ZHANG B, NING Y K, CAO F, et al. The status quo of rare earth resources in the world[J]. Multipurpose Utilization of Mineral Resources, 2018(4):7-12.

    Google Scholar

    [4] 赖丹, 吴一丁. 南方离子性稀土产业发展现状、问题及出路——以赣州为例[J]. 稀土, 2019, 40(4):140-148.

    Google Scholar

    LAI D, WU Y D. The status quo, problems and solutions of the ionic rare earth industry in Southern China: Taking Ganzhou as an example[J]. Rare Earths, 2019, 40(4):140-148.

    Google Scholar

    [5] 郭钟群, 金解放, 赵奎, 等. 离子吸附型稀土开采工艺与理论研究现状[J]. 稀土, 2018, 39(1):132-141.

    Google Scholar

    GUO Z Q, JIN J F, ZHAO K, et al. Ion adsorption type rare earth mining technology and theoretical research status[J]. Rare Earths, 2018, 39(1):132-141.

    Google Scholar

    [6] Ziqiang Chen, Zhibiao Chen, Xinyu Yan, et al. Stoichiometric mechanisms of dicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China[J]. Plant and Soil, 2016, 398(1/2):367-379.

    Google Scholar

    [7] 陈志彪, 陈志强, 岳辉. 花岗岩红壤侵蚀区水土保持综合研究: 以福建省长汀朱溪小流域为例[M]. 北京: 科学出版社, 2013.

    Google Scholar

    CHEN Z B, CHEN Z Q, YUE H. Comprehensive research on soil and water conservation in granite red soil erosion area: a case study of Zhuxi small watershed in Changting County, Fujian Province[M]. Beijing: Science Press, 2013.

    Google Scholar

    [8] 潘宗涛, 陈志强, 陈志彪, 等. 南方离子吸附型稀土矿区表层土壤稀土有效性及芒萁稀土元素迁移、吸收特征[J]. 稀土, 2019, 40(1):1-13.

    Google Scholar

    PAN Z T, CHEN Z Q, CHEN Z B, et al. The availability of rare earth elements in surface soils of southern ion-adsorbed rare earth mining areas and the characteristics of migration and absorption of rare earth elements of dichotoma[J]. Rare Earths, 2019, 40(1):1-13.

    Google Scholar

    [9] 刘海飞. 高密度电阻率法数据处理方法研究[D]. 长沙: 中南大学, 2004.

    Google Scholar

    LIU H F. Research on data processing method of high density resistivity method[D]. Changsha: Central South University, 2004.

    Google Scholar

    [10] 张来福, 李士强, 刘国强, 等. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1):220-225.

    Google Scholar

    ZHANG L F, LI S Q, LIU G Q, Yet al. Design of electrode system for electric detection of goaf under transmission towers[J]. Physical and Geochemical Exploration, 2020, 44(1):220-225.

    Google Scholar

    [11] 李金铭, 罗延钟. 电法勘探新进展[M]. 北京: 地质出版社, 1996.

    Google Scholar

    LI J M, LUO Y Z. New progress in electrical exploration[M]. Beijing: Geological Publishing House, 1996.

    Google Scholar

    [12] 董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003(1):171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    CrossRef Google Scholar

    DONG H B, WANG Z L. The development and application of high-density electrical method[J]. Earth Science Frontier, 2003(1):171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    CrossRef Google Scholar

    [13] Yasir Safaa F, Jani Janmaizatulriah, Mukri Mazidah. A dataset of visualization methods to assessing soil profile using RES2DINV and VOXLER software. 2019, 24: 103821.

    Google Scholar

    [14] 韦乙杰, 袁忠明. RES2DINV在粤北某铅锌矿区激电测深反演中的应用[J]. 物探与化探, 2013, 37(5):827-829.

    Google Scholar

    WEI Y J, YUAN Z M. The application of RES2DINV in the IP sounding inversion in a lead-zinc mining area in northern Guangdong[J]. Physical and Geochemical Exploration, 2013, 37(5):827-829.

    Google Scholar

    [15] 王磊, 蔡晓光, 李孝波, 等. 西吉县西南山区典型黄土地震滑坡高密度电法物探解译分析[J]. 地球物理学进展, 2020, 35(1):351-357.

    Google Scholar

    WANG L, CAI X G, LI X B, et al. Analysis of high-density electrical geophysical exploration of typical loess seismic landslides in the southwest mountainous area of Xiji County[J]. Progress in Geophysics, 2020, 35(1):351-357.

    Google Scholar

    [16] 刘成功, 金胜, 魏文博, 等. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2):351-358.

    Google Scholar

    LIU C G, JIN S, WEI W B, et al. High-density resistivity method ratio parameter based on damping least squares inversion[J]. Physical and Geochemical Exploration, 2019, 43(2):351-358.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1033) PDF downloads(193) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint