2015 Vol. 35, No. 3
Article Contents

NIE Senyan, XIAO Wenshen, WANG Rujian. PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157
Citation: NIE Senyan, XIAO Wenshen, WANG Rujian. PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157

PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO

  • The Antarctic Peninsula is one of the most sensitive areas to recent global warming. The Holocene climatic variation in this area is a key to the understanding of the mechanism of climate changes in the high latitude Southern Ocean. In this study, multiple proxies, such as tephra concentration, content of coarse fractions, grain size, sea ice related diatoms, have been studied for the core D1-7 collected at the Bransfield Strait, Antarctic Peninsula region, during the 28th Chinese National Antarctic Expedition, aiming to learn more about Holocene climatic variation in the Antarctic Peninsula region since the 6 ka. Thirteen tephra-bearing layers are identified, which can be regionally correlated and were possibly coming from the Deception Island. Nine Ice Rafted Debris events (IRD 1-9:0.84、0.97、1.18、1.89、2.05、2.25、2.45、4.46 and 5.09 ka) were identified. Frequent IRD events during the late Holocene, especially since 2.5 ka, are tele-connected to the enhanced ENSO variability during this interval, which brings more moisture to the Antarctic Peninsula region and causes the instability of ice shelf. Since 3.5 ka, the increase in the sea ice species of diatom along with the decrease of mean grain size of sortable silt suggested the expansion of sea ice and the weakening of bottom current. These data further suggest the late Holocene cooling of the study area, incorporated with northward shift of the Westerly.
  • 加载中
  • [1] Mulvaney R, Abram N J, Hindmarsh R C, et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history[J]. Nature, 2012, 489(7414):141-144.

    Google Scholar

    [2] Steig E J, Schneider D P, Rutherford S D, et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year[J]. Nature, 2009, 457(7228):459-462.

    Google Scholar

    [3] Steig E J, Orsi A J. Climate Science:The heat is on in Antarctica[J]. Nature Geoscience, 2013, 6(2):87-88.

    Google Scholar

    [4] Steig E J. Climate change:Brief but warm Antarctic summer[J]. Nature, 2012, 489(7414):39-40.

    Google Scholar

    [5] Luis A J. Past, Present and Future Climate of Antarctica[J]. International Journal of Geosciences, 2013, 4(6):959-977.

    Google Scholar

    [6] Domack E, Duran D, Leventer A, et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch[J]. Nature, 2005, 436(7051):681-685.

    Google Scholar

    [7] Masson V, Vimeux F, Jouzel J, et al. Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records[J]. Quaternary Research, 2000, 54(3):348-358.

    Google Scholar

    [8] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.

    Google Scholar

    [9] Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291(5501):112-114.

    Google Scholar

    [10] Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083):491-496.

    Google Scholar

    [11] Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457(7233):1097-1102.

    Google Scholar

    [12] Barbante C, Barnola J-M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116):195-198.

    Google Scholar

    [13] Pike J, Swann G E A, Leng M J, et al. Glacial discharge along the west Antarctic Peninsula during the Holocene[J]. Nature Geoscience, 2013, 6(3):199-202.

    Google Scholar

    [14] Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula:a Holocene palaeoenvironmental reference for the circum-Antarctic[J]. The Holocene, 2001, 11(1):1-9.

    Google Scholar

    [15] Etourneau J, Collins L G, Willmott V, et al. Holocene climate variations in the western Antarctic Peninsula:evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability[J]. Climate of the Past, 2013, 9(4):1431-1446.

    Google Scholar

    [16] Diekmann B, Kuhn G, Rachold V, et al. Terrigenous sediment supply in the ScotiaSea (Southern Ocean):response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3):357-387.

    Google Scholar

    [17] Esper O, Gersonde R. New tools for the reconstruction of Pleistocene Antarctic sea ice[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399(0):260-283.

    Google Scholar

    [18] Esper O, Gersonde R. Quaternary surface water temperature estimations:New diatom transfer functions for the Southern Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:1-19.

    Google Scholar

    [19] Esper O, Gersonde R, Kadagies N. Diatom distribution in southeastern Pacific surface sediments and their relationship to modern environmental variables[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 287(1-4):1-27.

    Google Scholar

    [20] Crosta X, Romero O, Armand L K, et al. The biogeography of major diatom taxa in Southern Ocean sediments:2. Open ocean related species[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):66-92.

    Google Scholar

    [21] Armand L K, Crosta X, Romero O, et al. The biogeography of major diatom taxa in Southern Ocean sediments:1. Sea ice related species[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):93-126.

    Google Scholar

    [22] Zielinski U, Gersonde R. Diatom distribution in Southern Ocean surface sediments (Atlantic sector):Implications for paleoenvironmental reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129(3-4):213-250.

    Google Scholar

    [23] Gersonde R, ZielinskiU. The reconstruction of late Quaternary Antarctic sea-ice distribution-the use of diatoms as a proxy for sea-ice[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4):263-286.

    Google Scholar

    [24] McCave I N, Crowhurst S J, Kuhn G, et al. Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene[J]. Nature Geoscience, 2013, 7(2):113-116.

    Google Scholar

    [25] McCave I N, Hall I R. Size sorting in marine muds:Processes, pitfalls, and prospects for paleoflow-speed proxies[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10), Q10N05, doi:10.1029/2006GC001284.

    Google Scholar

    [26] McCave I, Manighetti B, Robinson S. Sortable silt and fine sediment size/composition slicing:parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3):593-610.

    Google Scholar

    [27] Belkin I M, Gordon A L. Southern Ocean Fronts from the Greenwich meridian to Tasmania[J]. Journal of Geophysical Research, 1996, 101(C2):3675-3696.

    Google Scholar

    [28] Orsi A H, Whitworth T, Nowlin W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research I, 1995, 42(5):641-673.

    Google Scholar

    [29] Toggweiler J. Shifting westerlies[J]. Science, 2009, 323(5920):1434-1435.

    Google Scholar

    [30] Orsi A H, Nowlin Jr W D, Whitworth Ⅲ T. On the circulation and stratification of the Weddell Gyre[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(1):169-203.

    Google Scholar

    [31] Schodlok M, Hellmer H, Rohardt G, et al. Weddell Sea iceberg drift:Five years of observations[J]. Journal of Geophysical Research:Oceans, 2006,1978-2012:111(C6).

    Google Scholar

    [32] Anderson J B, Andrews J T. Radiocarbon constraints on ice sheet advance and retreat in the Weddell Sea, Antarctica[J]. Geology, 1999, 27(2):179-182.

    Google Scholar

    [33] Comiso J C, Cavalieri D J, MarkusT.Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(2):243-252.

    Google Scholar

    [34] Weber M E, Clark P U, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature, 2014, 510(7503):134-138.

    Google Scholar

    [35] ó Cofaigh C, Davies B J, Livingstone S J, et al. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100:87-110.

    Google Scholar

    [36] Toro M, Granados I, Pla S, et al. Chronostratigraphy of the sedimentary record of LimnopolarLake, ByersPeninsula, LivingstonIsland, Antarctica[J]. Antarctic Science, 2013, 25(2):198-212.

    Google Scholar

    [37] Willmott V, Domack E W, Canals M, et al. A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula[J]. Quaternary Research, 2006, 66(1):1-11.

    Google Scholar

    [38] Smellie J L. The upper Cenozoic tephra record in the south polar region:a review[J]. Global and Planetary Change, 1999, 21(1):51-70.

    Google Scholar

    [39] Björck S, Sandgren P, Zale R. Late Holocene tephrochronology of the northern Antarctic Peninsula[J]. Quaternary Research, 1991, 36:322-328.

    Google Scholar

    [40] Denis D, Crosta X, Schmidt S, et al. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica[J]. Quaternary Science Reviews, 2009, 28(13-14):1291-1303.

    Google Scholar

    [41] Cefarelli A O, Ferrario M E, Almandoz G O, et al. Diversity of the diatom genus Fragilariopsis in the ArgentineSea and Antarctic waters:morphology, distribution and abundance[J]. Polar Biology, 2010, 33(11):1463-1484.

    Google Scholar

    [42] Geary L E. Holocene diatoms recovered from SHALDRIL Cores,MaxwellBay, Antarctica:[D]. Berkeley:FloridaStateUniversity, 2007.

    Google Scholar

    [43] Almandoz G O, Ferreyra G A, Schloss I R, et al. Distribution and ecology of Pseudo-nitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica)[J]. Polar Biology, 2007, 31(4):429-442.

    Google Scholar

    [44] Zielinski U, Gersonde R. Plio-Pleistocene diatom biostratigraphy from ODP Leg 177, Atlantic sector of the Southern Ocean[J]. Marine Micropaleontology, 2002, 45(3):225-268.

    Google Scholar

    [45] Armand L K, Zielinski U. Diatom species of the genus Rhizosolenia from Southern Ocean sediments:Distribution and taxonomic notes[J]. Diatom Research, 2001, 16(2):259-294.

    Google Scholar

    [46] Iwai M, Winter D. Data Report:Taxonomic Notes of Neogene Diatoms from the Western Antarctic Peninsula:Ocean Drilling Program Leg 178[C]//Procceeding of the Ocean Drilling Program, Scientific Results Volume 178. College StationTX:Texaa A&M University, 2002:1-57.

    Google Scholar

    [47] Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2007, 54(21-22):2350-2366.

    Google Scholar

    [48] Heroy D C, Sjunneskog C, Anderson J B. Holocene climate change in the BransfieldBasin, Antarctic Peninsula:evidence from sediment and diatom analysis[J]. Antarctic Science, 2008, 20(1):69-87.

    Google Scholar

    [49] 聂森艳, 王汝建, 肖文申. 南极半岛Bransfield海峡6000年以来的陆源组分记录及其古环境意义[J]. 第四纪研究, 2014, 34(3):590-599.

    Google Scholar

    [NIE Senyan, WANG Rujian, XIAO Wenshen. A 6000-year record of terrigeneous components from the BransfieldStrait, Antarctic Peninsula:responses to climate change[J]. Quaternary Science, 2014, 34(3):590-599.]

    Google Scholar

    [50] Stuiver M, Reimer P J. Extended 14C database and revised CALIB radiocarbon calibration program[J]. Radiocarbon, 1993, 35:215-230.

    Google Scholar

    [51] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal.BP[J]. Radiocarbon, 2013, 55(4):1869-1887.

    Google Scholar

    [52] Gordon J E, Harkness D D. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life-Implications for reservoir corrections in radiocarbon dating[J]. Quaternary Science Reviews, 1992, 11(7):697-708.

    Google Scholar

    [53] Berkman P A, Forman S L. Pre-Bomb Radiocarbon and the Reservoir Correction for Calcareous Marine Species in the Southern Ocean[J]. Geophysical Research Letter, 1996, 23(4):363-366.

    Google Scholar

    [54] Leventer A, Domack E, Barkoukis A, et al. Laminations from the Palmer Deep:A diatom-based interpretation[J]. Paleoceanography, 2002, 17(3):PAL 3-1-PAL 3-15.

    Google Scholar

    [55] Taylor F, Sjunneskog C. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom assemblages[J]. Paleoceanography, 2002, 17(3):PAL 2-1-PAL 2-12.

    Google Scholar

    [56] Conroy J L, Overpeck J T, Cole J E. El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific sea surface temperature over the last 1.2 ka[J]. Pages News, 2010, 18(1):32-33.

    Google Scholar

    [57] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11):1166-1180.

    Google Scholar

    [58] Voigt I, Chiessi C M, Prange M, et al. Holocene shifts of the Southern Westerlies across the South Atlantic[J]. Paleoceanography, 2015.

    Google Scholar

    [59] Lamy F, Kilian R, Arz H W, et al. Holocene changes in the position and intensity of the southern westerly wind belt[J]. Nature Geoscience, 2010, 3(10):695-699.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(990) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint