2015 Vol. 35, No. 2
Article Contents

MAO Shengyi, ZHU Xiaowei, SUN Yongge, GUAN Hongxiang, WU Daidai, WU Nengyou. IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 139-148. doi: 10.3724/SP.J.1140.2015.02139
Citation: MAO Shengyi, ZHU Xiaowei, SUN Yongge, GUAN Hongxiang, WU Daidai, WU Nengyou. IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 139-148. doi: 10.3724/SP.J.1140.2015.02139

IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS

More Information
  • The lipid biomarkers of fatty acids in Site4B sediments from Shenhu Area, Northern South China Sea are studied in this paper and the sources of branched fatty acids and monounsaturated fatty acids are discussed. The results reveal that i/a-C15:0, i/a-C17:0, 16:1ω5 and 18:1ω9 are derived from sulfate reducing bacteria (SRB), while 16:1ω7t/c and 18:1ω7 are originated from sulfur-oxidizing bacteria (SOB). The distribution of SRB and SOB may be related with the process that sulfate was reduced to sulfide, and then sulfide oxidized to sulfate and element of sulfur, and at last elemental sulfur was disproportionated to sulfide and sulfate. In this process, SRB dominated the sulfur cycle system in the sediments. The increasing biomass of SRB and SOB at depths of 95~97 cm is related with diapire structure around Site4B, which carries a great amount of nutrient fluid.
  • 加载中
  • [1] Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria[C]//In:Zehnder A J B (ed). Biology of anaerobic microorganisms. New York:John Wiley and Sons, 1988:469-585.

    Google Scholar

    [2] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate-reduction[J]. Nature, 1982, 296:643-645.

    Google Scholar

    [3] Taylor J, Parkes R J. Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers[J]. Journal of General Microbiology, 1985, 131(3):631-642.

    Google Scholar

    [4] Londry K L, Jahnke L L, Des Marais D J. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria[J]. Applied and Environment Microbiology, 2004, 70(2):745-751.

    Google Scholar

    [5] Sørensen J, Christensen D, Jørgensen B B. Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment[J]. Applied and Environmental Microbiology, 1981, 42(1):5-11.

    Google Scholar

    [6] Jannasch H W, Nelson D C, Wirsen C O. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site[J]. Nature, 1989, 342(6251):834-836.

    Google Scholar

    [7] Jannasch H W, Wirsen C O, Nelson D C, et al. Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent[J]. International Journal of Systematic Bacteriology, 1985, 35(4):422-424.

    Google Scholar

    [8] Nelson D C, Wirsen C O, Jannasch H W. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin[J]. Applied and Environmental Microbiology, 1989, 55(11):2909-2917.

    Google Scholar

    [9] Strohl W R, Cannon G C, Shively J M, et al. Heterotrophic carbon metabolism by Beggiatoa alba[J]. Journal of Bacteriology, 1981, 148(2):572-583.

    Google Scholar

    [10] Hagen K D, Nelson D C. Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures[J]. Applied and Environmental Microbiology, 1996, 62(3):947-953.

    Google Scholar

    [11] Nelson D C, Jannasch H W. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures[J]. Archives of Microbiology, 1983, 136(4):262-269.

    Google Scholar

    [12] Ravenschlag K, Sahm K, Amann R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)[J]. Applied and Environmental Microbiology, 2001, 67(1):387-395.

    Google Scholar

    [13] Laanbroek J H, Pfennig N. Oxidation of short chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments[J]. Archives of Microbiology, 1981, 128:330-335.

    Google Scholar

    [14] Shaw N. Lipid composition as a guide to the classification of bacteria[J]. Advances in Applied Microbiology, 1974, 17:63-108.

    Google Scholar

    [15] Lechevalier M P. Lipids in bacterial taxonomy-a taxonomist's view[J]. Critical Reviews in Microbiology, 1977, 5:109-210.

    Google Scholar

    [16] Parkes R J, Taylor J. The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments[J]. Estuarine, Coastal and Shelf Science, 1983, 16:173-189.

    Google Scholar

    [17] Perry G J, Volkman J M, Johns R B, et al. Fatty acids of bacterial origin in contemporary marine sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43:1715-1725.

    Google Scholar

    [18] Van Vleet E S, Quinn T G. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43:289-303.

    Google Scholar

    [19] Boon J J, de Leeuw J W, Hoek G J, et al. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branded beta-hydroxy acids in Desulfovibrio desulfuricans[J]. Journal of Bacteriology, 1977, 129:1183-1191.

    Google Scholar

    [20] Vainshtein M, Hippe H, Kroppenstedt R M. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria[J]. Systematic and Applied Microbiology, 1992, 15:554-566.

    Google Scholar

    [21] Zhang C L, Huang Z Y, Cantu J, et al. Lipid Biomarkers and Carbon Isotope Signatures of a Microbial (Beggiatoa) Mat Associated with Gas Hydrates in the Gulf of Mexico[J]. Applied and Environment Microbiology, 2005, 71:2106-2112.

    Google Scholar

    [22] Cypionka H, Widdel F, Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients[J]. FEMS Microbiology Letters, 1985, 31(1):39-45.

    Google Scholar

    [23] Fukui M, Takii S. Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake[J]. FEMS Microbiology Letters, 1990, 73(4):317-322.

    Google Scholar

    [24] Dannenberg S, Kroder M, Dilling W, et al. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria[J]. Archives of Microbiology, 1992, 158(2):93-99.

    Google Scholar

    [25] Jørgensen B B, Bak F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegatt, Denmark)[J]. Applied and Environmental Microbiology, 1991, 57(3):847-856.

    Google Scholar

    [26] Fruend C, Cohen Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats[J]. Applied and Environmental Microbiology, 1992, 58(1):70-77.

    Google Scholar

    [27] Visscher P T, Prins R A, van Gemerden H. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat[J]. FEMS Microbiology Letters, 1992, 86(4):283-294.

    Google Scholar

    [28] Ramsing N B, Kuehl M, Jorgensen B B. Distribution of sulfate-reducing bacteria, O2and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes[J]. Applied and Environmental Microbiology, 1993, 59(11):3840-3849.

    Google Scholar

    [29] Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mari ager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrop horesis of PCR-amplified ribosomal DNA fragments[J]. Applied and Environmental Microbiology, 1996, 62(4):1405-1415.

    Google Scholar

    [30] Henrik S, Heribert C, Hans-Dietrich B. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin[J]. FEMS Microbiology Ecology, 1997, 22:245-255.

    Google Scholar

    [31] 于晓果, 韩喜球, 李宏亮, 等. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J]. 海洋学报, 2008, 30(3):77-84.

    Google Scholar

    [YU Xiaoguo, HAN Xiqiu, LI Hongliang, et al. Biomarkers and C-isotope composition in sediments and carbonates of the Dongsha region, South China Sea:Evidence for anaerobic oxidation of methane[J]. Acta Oceanologica Sinica, 2008, 30(3):77-84.]

    Google Scholar

    [32] Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositionsin a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Chinese Sci. Bull, 2011, 56:1700-1707.

    Google Scholar

    [33] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650.

    Google Scholar

    [WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6):1641-1650.]

    Google Scholar

    [34] 谢蕾,王家生,林杞. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(3):382-392.

    Google Scholar

    [XIE Lei, WANG Jiasheng, LIN Qi. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea[J]. Acta Petrologica et Mineralogica, 2012, 31(3):382-392.]

    Google Scholar

    [35] Taylor J, Parkes R J. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibvio desulfuvicans[J]. Journal of General Microbiology, 1983, 129:3303-3309.

    Google Scholar

    [36] Zelles L, Palojarvi A, Kandeler E, et al. Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation[J]. Soil Biology and Biochemistry, 1997, 29:1325-1336.

    Google Scholar

    [37] Xiao S H, Schiffbauer J D, McFadden K A, et al. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules:Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation[J]. Earth and Planetary Science Letters, 2010, 297(3):481-495.

    Google Scholar

    [38] Berner R A. Sedimentary pyrite formation:An update[J]. Geochim Cosmochim Acta, 1984, 48:605-615.

    Google Scholar

    [39] Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments[J]. Geology, 2001, 29:555-558.

    Google Scholar

    [40] Zhang C L, Y Li, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.

    Google Scholar

    [41] Guezennec J, Fiala-Medioni A. Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis[J]. FEMS Microbiology Ecology, 1996, 19(2):83-93.

    Google Scholar

    [42] Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane[J]. Geomicrobiology Journal, 2003, 20:403-419.

    Google Scholar

    [43] Dowling N J E, Widdle F, White D C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria[J]. Journal of General Microbiology, 1986, 132:1815-1825.

    Google Scholar

    [44] Rutters H, Sass H, Cypionka H, et al. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhadus amnigenus[J]. Archives of Microbiology, 2001, 176(6):435-442.

    Google Scholar

    [45] Kohring L L, Ringelberg D B, Devereux R, et al. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among disimilatory sulfate-reducing bacteria[J]. FEMS Microbiology Letters, 1994, 119(3):303-308.

    Google Scholar

    [46] Vestal J R, White D C. Lipid analysis in microbial ecology:quantitative approaches to the study of microbial communities[J]. Bioscience, 1989, 39:535-541.

    Google Scholar

    [47] Fang J, Hasiotis S T, Gupta S D, et al. Microbial biomass and community structure of a stromatolite from an acid mine drainage system as determined by lipid analysis[J]. Chemical Geology, 2007, 243:191-204.

    Google Scholar

    [48] Sicre M A, Paillasseur J L, Marty J C, et al. Characterization of seawater samples using chemometric methods applied to biomarker fatty acids[J]. Organic Geochemistry, 1988, 12:281-288.

    Google Scholar

    [49] Wilkinson S G. Gram-negative bacteria[C]//In:Ratledge C, Wilkinson S G (eds). Microbial lipids, London:Academic Press, 1988:299-488.

    Google Scholar

    [50] Guezennec J, Ortega-Morales O, Raguenes G, et al. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents[J]. FEMS Microbiology Ecology, 1998, 26(2):89-99.

    Google Scholar

    [51] Jacq E, Prieur D, Nichols P, et al. Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrate around subtidal hydrothermal vents[J]. Archives of Microbiology, 1989, 152(1):64-71.

    Google Scholar

    [52] McCaffrey M A, Farrington J W, Repeta D J. Geochemical implications of the lipid composition of Thioploca spp. from the Peru upwelling regions-15°S[J]. Organic Geochemistry, 1989, 14(1):61-68.

    Google Scholar

    [53] Li Y L, Peacock A D, White D C, et al. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico[J]. Chemical Geology, 2007, 238(3):168-179.

    Google Scholar

    [54] Volkman J K, Jeffrey S W, Nichols P D, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture[J]. Journal of Experimental Marine Biology and Ecology, 1989, 128(3):219-240.

    Google Scholar

    [55] Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J]. Organic Geochemistry, 2004, 35(5):573-582.

    Google Scholar

    [56] Fuseler K, Krekeler D, Sydow U, et al. A common pathway of sulfide oxidation by sulfate-reducing bacteria[J]. FEMS Microbiology Letters, 1996, 144(2-3):129-134.

    Google Scholar

    [57] Jørgensen B B. A thiosulfate shunt in the sulfur cycle of marine sediments[J]. Science, 1990, 249:152-154.

    Google Scholar

    [58] Fuseler K, Cypionka H. Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus[J]. Archives of Microbiology, 1995, 164(2):104-109.

    Google Scholar

    [59] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mud rocks[J]. American Journal of Science, 1998, 298(7):537-552.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1296) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint