2014 Vol. 34, No. 4
Article Contents

HAO Peng, LI Tiegang, CHANG Fengming, NAN Qingyun, XIONG Zhifang, QIN Binbin, ZHENG Xufeng. RESPONSE OF THE SOUTHWESTERN SOUTH CHINA SEA TO THE RAPID CLIMATE CHANGES SINCE THE LAST GLACIAL MAXIMUM[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91. doi: 10.3724/SP.J.1140.2014.04083
Citation: HAO Peng, LI Tiegang, CHANG Fengming, NAN Qingyun, XIONG Zhifang, QIN Binbin, ZHENG Xufeng. RESPONSE OF THE SOUTHWESTERN SOUTH CHINA SEA TO THE RAPID CLIMATE CHANGES SINCE THE LAST GLACIAL MAXIMUM[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91. doi: 10.3724/SP.J.1140.2014.04083

RESPONSE OF THE SOUTHWESTERN SOUTH CHINA SEA TO THE RAPID CLIMATE CHANGES SINCE THE LAST GLACIAL MAXIMUM

More Information
  • Changes in the sea surface temperature (SST) and salinity (SSS) over the last 24ka have been estimated from sediment core CG2 located in the Sunda slope by means of Mg/Ca ratio and oxygen isotopes of the planktonic foraminifera Globigerinoides ruber, combined with the quantitative statistical data of planktonic foraminifera. Our results imply that the sea surface salinity, abundance of warm-water species and the depth of thermocline have obvious responses to the rapid climate change. Compared with the slowly deglacial warming of the open Pacific, the SST record in the southwestern SCS shows a deglacial warming interrupted by a cooling event coeval with H1, followed by marked Bølling and late YD SST increasing, which suggest a ‘Greenland type’ of deglacial warming. Their difference between the two regions might be caused by the reason that the SCS is more strongly affected by the East Asian monsoon. In the eastern and western equatorial Pacific, however, salinity variations were almost the same as those during the rapid climate change events. The variation in the upper water environment of the western tropical Pacific was closely linked with the latitudinal shifts of the intertropical convergence zone (ITCZ) and the East Asian monsoon anomaly since the LGM.
  • 加载中
  • [1] Dansgaard W, Johnsen S, Clausen H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220.

    Google Scholar

    [2] Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J]. Quaternary Research, 2000, 53(3):277-284.

    Google Scholar

    [3] Broecker W, Bond G, Klas M, et al. Origin of the northern Atlantic's Heinrich events[J]. Climate Dynamics, 1992, 6(3-4):265-273.

    Google Scholar

    [4] Porter S C, An Z. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375:305-308.

    Google Scholar

    [5] Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5(1):46-49.

    Google Scholar

    [6] Thompson L, Yao T, Davis M, et al. Tropical climate instability:The last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320):1821-1825.

    Google Scholar

    [7] Hendy I, Kennett J, Roark E, et al. Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30-10ka[J]. Quaternary Science Reviews, 2002, 21(10):1167-1184.

    Google Scholar

    [8] Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2):236-247.

    Google Scholar

    [9] Sachs J P, Lehman S J. Subtropical North Atlantic temperatures 60, 000to 30, 000years ago[J]. Science, 1999, 286(5440):756-759.

    Google Scholar

    [10] Leuschner D C, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich events[J]. Quaternary Science Reviews, 2000, 19(1):243-254.

    Google Scholar

    [11] Li T, Liu Z, Hall M A, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1):133-146.

    Google Scholar

    [12] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348.

    Google Scholar

    [13] Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670):575-578.

    Google Scholar

    [14] Bender M, Sowers T, Dickson M L, et al. Climate correlations between Greenland and Antarctica during the past 100, 000years[J]. Nature, 1994, 372(6507):663-666.

    Google Scholar

    [15] Clement A C, Peterson L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(4):doi:10.1029/2006RG000204.

    Google Scholar

    [16] Guo Z, Liu T, Guiot J, et al. High frequency pulses of East Asian monsoon climate in the last two glaciations:Link with the North Atlantic[J]. Climate Dynamics, 1996, 12(10):701-709.

    Google Scholar

    [17] de Garidel-Thoron T, Beaufort L, Linsley B K, et al. Millennial-scale dynamics of the East Asian winter monsoon during the last 200, 000years[J]. Paleoceanography, 2001, 16(5):491-502.

    Google Scholar

    [18] Tian J, Huang E, Pak D K. East Asian winter monsoon variability over the last glacial cycle:Insights from a latitudinal sea-surface temperature gradient across the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1):319-324.

    Google Scholar

    [19] Wang P. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1):5-39.

    Google Scholar

    [20] Steinke S, Glatz C, Mohtadi M, et al. Past dynamics of the East Asian monsoon:No inverse behaviour between the summer and winter monsoon during the Holocene[J]. Global and Planetary Change, 2011, 78(3):170-177.

    Google Scholar

    [21] Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum:Implications for the East Asian winter monsoon development[J]. Paleoceanography, 2010, 25(2):PA2219, doi:10.1029/2009PA001850.

    Google Scholar

    [22] Huang E, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26ka and the East Asian winter monsoon[J]. Quaternary Research, 2011, 75(1):196-204.

    Google Scholar

    [23] Oppo D W, Sun Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian monsoon[J]. Geology, 2005, 33(10):785-788.

    Google Scholar

    [24] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1):245-284.

    Google Scholar

    [25] 常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8).[CHANG Fengming, LI Tiegang. Progress in the Paleoceanography of the Western Pacific Warm Pool:A Review[J]. Advances in Earth Science, 2003, 28

    Google Scholar

    (8).]

    Google Scholar

    [26] 胡建芳, 彭平安, 贾国东, 等. 三万年来南沙海区古环境重建:生物标志物定量与单体碳同位素研究[J]. 沉积学报, 2003, 21(2):211-217.

    Google Scholar

    [HU Jianfang, PENG Pingan, JIA Guodong, et al. A biomarker and isotopic approach for the paleoenvironmental reconstruction, Nansha area, South China Sea since the Last 30ka[J]. Acta Sedimentologica Sinica, 2003, 21(2):211-217.]

    Google Scholar

    [27] Andreasen D, Ravelo A. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum[J]. Paleoceanography, 1997, 12(3):395-413.

    Google Scholar

    [28] Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):8407, doi:10.1029/2003GC000559.

    Google Scholar

    [29] Hastings D, Kienast M, Steinke S, et al. A comparison of three independent paleotemperature estimates from a high resolution record of deglacial SST records in the tropical South China Sea[J]. eos, 2001, 82:12B-10.

    Google Scholar

    [30] Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16):2369-2379.

    Google Scholar

    [31] Steinke S, Chiu H Y, Yu P S, et al. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22, 000years[J]. Quaternary Science Reviews, 2006, 25(13):1475-1488.

    Google Scholar

    [32] Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera:Experimental results and revised paleotemperature equations[J]. Paleoceanography, 1998, 13(2):150-160.

    Google Scholar

    [33] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1):295-305.

    Google Scholar

    [34] Steinke S, Chiu H Y, Yu P-S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes:Implications for reconstructing past tropical/subtropical surface water conditions[J]. Geochemistry Geophysics Geosystems, 2005, 6(11):Q11005.

    Google Scholar

    [35] Shackleton N J. The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289(5486):1897-1902.

    Google Scholar

    [36] Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific[J]. Geophysical Research Letters, 2003, 30(8):1428.

    Google Scholar

    [37] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579):222-226.

    Google Scholar

    [38] Lin I T, Wang C H, Lin S. Seasonal variations of oxygen isotopic compositions in the Pingtung coastal waters of Taiwan[J]. Western Pacific Earth Sciences, 2003, 3(1):21-32.

    Google Scholar

    [39] 褚智慧, 翦知湣, 乔培军, 等. 末次盛冰期以来苏拉威西海区上层海水对快速气候变化的响应[J]. 第四纪研究, 2011, 31(2):256-264.

    Google Scholar

    [CHU Zhihui, JIAN Zhimin, QIAO Peijun, et al. Response of the Sulawesi Sea upper ocean water to the rapid climate changes since the Last Glacial Maximum. Quaternary research, 2011, 31(2):256-264.]

    Google Scholar

    [40] Steinke S, Yu P-S, Kucera M, et al. No-analog planktonic foraminiferal faunas in the glacial southern South China Sea:Implications for the magnitude of glacial cooling in the western Pacific warm pool[J]. Marine Micropaleontology, 2008, 66(2):71-90.

    Google Scholar

    [41] Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean:a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7):1063-1081.

    Google Scholar

    [42] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123):74-77.

    Google Scholar

    [43] Rostek F, Ruhland G, Bassinot F, et al. Reconstructing sea surface temperature and salinity using 18 O and alkenone records[J]. Nature, 1993, 364:319-321.

    Google Scholar

    [44] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919):152-155.

    Google Scholar

    [45] Clement A C, Cane M A, Seager R. An Orbitally Driven Tropical Source for Abrupt Climate Change*[J]. Journal of Climate, 2001, 14(11):2369-2375.

    Google Scholar

    [46] Hoerling M P, Hurrell J W, Xu T. Tropical origins for recent North Atlantic climate change[J]. Science, 2001, 292(5514):90-92.

    Google Scholar

    [47] 翦知湣, 黄维. 快速气候变化与高分辨率的深海沉积记录[J]. 地球科学进展, 2003, 18(5):673-680.

    Google Scholar

    [JIAN Zhimin, HUANG Wei. Rapid climate change and high resolution deep-sea sedimenary records[J]. Advances in Earth Sciences, 2003, 18(5):673-680.]

    Google Scholar

    [48] Schmittner A, Appenzeller C, Stocker T F. Enhanced Atlantic freshwater export during El Niño[J]. Geophysical Research Letters, 2000, 27(8):1163-1166.

    Google Scholar

    [49] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449(7161):452-455.

    Google Scholar

    [50] Lunt D J, Ridgwell A, Valdes P J, et al. "Sunshade world":a fully coupled GCM evaluation of the climatic impacts of geoengineering[J]. Geophysical Research Letters, 2008, 35(12):doi:10.1029/2008GL033674.

    Google Scholar

    [51] Leduc G, Vidal L, Tachikawa K, et al. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?[J]. Quaternary Research, 2009, 72(1):123-131.

    Google Scholar

    [52] Chiang J C, Bitz C M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone[J]. Climate Dynamics, 2005, 25(5):477-496.

    Google Scholar

    [53] Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 2005, 18(12):1853-1860.

    Google Scholar

    [54] Levi C, Labeyrie L, Bassinot F, et al. Low -latitude hydrological cycle and rapid climate changes during the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5):doi:10.1029/2006GC001514.

    Google Scholar

    [55] Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability:0-30kyr[J]. Paleoceanography, 2006, 21(3):doi:10.1029/2005PA001208.

    Google Scholar

    [56] Shaw P-T, Chao S-Y. Surface circulation in the South China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(11):1663-1683.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1033) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint