2014 Vol. 34, No. 2
Article Contents

ZHAO Jun, ZHANG Haisheng, YU Peisong, WU Guanghai, LU Bing, Pulyaeva I A. MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 95-103. doi: 10.3724/SP.J.1140.2014.02095
Citation: ZHAO Jun, ZHANG Haisheng, YU Peisong, WU Guanghai, LU Bing, Pulyaeva I A. MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 95-103. doi: 10.3724/SP.J.1140.2014.02095

MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT

  • Calcareous nannofossils in CM1D03 Co-rich crust of west Pacific Seamounts were analyzed to esimate the stratigraphic ages. The results showed that the lower layer was formed in the late Paleocene-early Eocene (54~51 Ma), whereas the porous middle layer was formed in the middle Eocene (45~40 Ma) and the upper layer was in the Miocene-Pliocene (22~2.4 Ma) and the Pliocene-Pleistocene (3.6~1.2 Ma). The molecular fossils, including chloroform bitumen "A", n-alkanes, isoprenoids, steranes, in the Co-rich crust were measured using gas chromatography and gas chromatography-mass spectrum. The source composition, depositional environment and palaeoecological community succession in the Co-rich crust during its growth have been discussed by analyzing the characteristics of these fine molecules (C27, C28, and C29 steranes) and their molecular indices (ΣC23-/ΣC24+, CPI and Pr/Ph) with consideration of the variation in organic carbon (TOC) content and its stable isotope compositions (δ13C) records. The results showed that chloroform bitumen "A"/TOC ("A"/C) ratio was 10.51%~21.74%, showing significant hydrocarbon transport pattern. The ratio of ΣC23-/ΣC+24 for n-alkanes was 0.74~1.47,the CPI was 0.80~1.45, and the value of δ13C was -24.00‰~-25.48‰, indicating that organic matter in the Co-rich crust mainly origined from phytoplankton. The results also indicated that the source of organic matter, C27, C28, and C29 steranes distribution variation, TOC preservation and δ13C were related to changes in marine environment, global climate and Antarctic Bottom Water during the formation of Co-rich crust.
  • 加载中
  • [1] Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008,275(1-2):1-16.

    Google Scholar

    [2] Bianchi T S, Canuel E A. Chemical Biomarkers in Aquatic Ecosystems[M]. Princeton:Princeton University Press, 2011:396.

    Google Scholar

    [3] 谢树成, 殷鸿福, 史晓颖, 等. 地球生物学:生命与地球环境的相互作用和协同演化[M]. 北京:科学出版社, 2011:345.[XIE Shucheng, YIN Hongfu, SHI Xiaoying, et al. Geobiology:The Intercation and Synergetic Evolvement Between Life and Earth Environment[M]. Beijing:Science Press, 2011:345.]

    Google Scholar

    [4] 谢树成, Evershed R P. 泥炭分子化石记录气候变迁和生物演替的信息[J]. 科学通报, 2001,46(10):863-866.

    Google Scholar

    [XIE Shucheng, Evershed R P. Peat molecular fossils recording paleoclimatic change and organism replacement[J]. Chinese Science Bulletin, 2001,46(10):863-866.]

    Google Scholar

    [5] Burdige D J. Geochemistry of Marine Sediments[M]. Princeton:Princeton University Press, 2007:609.

    Google Scholar

    [6] 赵京涛, 李军, 常凤鸣, 等. 西太平洋边缘MIS6期以来钙质超微化石的氧同位素记录及其古海洋学意义[J]. 海洋地质与第四纪地质, 2010,30(5):75-82.

    Google Scholar

    [ZHAO Jingtao, LI Jun, CHANG Fengming, et al. Oxygen isotope records of calcareous nannofossils since MIS6 from the marginal area of west Pacific[J]. Marine Geology and Quaternary Geology, 2010,30(5):75-82.]

    Google Scholar

    [7] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust[J]. Earth and Planetary Science Letters, 2005,238(1-2):42-48.

    Google Scholar

    [8] Cowen J P, DeCarlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount[J]. Marine Geology, 1993,115(34):289-306.

    Google Scholar

    [9] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地层学研究[J]. 地球科学, 2004,29(2):141-147.

    Google Scholar

    [SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts[J]. Earth Science, 2004, 29(2):141-147.]

    Google Scholar

    [10] 潘家华, 张静, 刘淑琴, 等. 西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J]. 地球学报, 2007,28(5):411-417.

    Google Scholar

    [PAN Jiahua, ZHANG Jing, LIU Shuqin, et al. Calcareous nannofossil biostratigraphy of Co-rich crusts from northwestern Pacific and its significance[J]. Acta Geoscientica Sinica, 2007,28(5):411-417]

    Google Scholar

    [11] Pulyaeva I A, Hein J R. Paleoceanographic Conditions During the Formation of Fe-Mn Crusts from the Pacific Ocean:Biostratigraphic and Compositional Evidence[R]. Gelendzhik, Russia:39th Underwater Mining Institute, 2010.

    Google Scholar

    [12] Bramlette M N, Riedel W R. Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores[J]. Journal of Paleontology, 1954,28(4):385-403.

    Google Scholar

    [13] Bramlette M N, Wilcoxon J A. Middle Tertiary calcareous nannoplankton of the Cipero section, Trinidad, W.I.[J]. Tulane Studies of Geology, 1967,5(3):93-131.

    Google Scholar

    [14] Raffi I, Backman J, Fornaciari E, et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years[J]. Quaternary Science Reviews, 2006,25(2324):3113-3137.

    Google Scholar

    [15] Bown P R. Calcareous Nannofossil Biostratigraphy[M]. Netherlands:Springer, 1998:315.

    Google Scholar

    [16] Bolli H M, Saunders J B, Perch-Nielsen K. Plankton Stratigraphy:Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids[M]. Cambridge University Press, 1989.

    Google Scholar

    [17] Berggren W A, Kent D V, Swisher C C, et al. A revised Cenozoic geochronology and chronostratigraphy[M]//BERGGREN W A. Geochronology, Time Scales, and Global Stratigraphic Correlation. Tulsa, Okla; Society for Sedimentary Geology. 1995:129-212.

    Google Scholar

    [18] Martini E. Standard Tertiary and Quaternary calcareous nannoplankton zonation[C]//Proceedings of the Second Planktonic Conference. 1970.

    Google Scholar

    [19] Zhang M, Sun X, Xue T, et al. Hydrocarbons in ferromanganese crusts from Pacific seamounts and their implications for the genesis[J]. Acta Petrologica Sinica, 2007,23(11):3026-3036.

    Google Scholar

    [20] Weber T S, Deutsch C. Ocean nutrient ratios governed by plankton biogeography[J]. Nature, 2010,467(7315):550-554.

    Google Scholar

    [21] Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986,9(2):83-99.

    Google Scholar

    [22] Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971,8(3):183-189.

    Google Scholar

    [23] Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K.-I:source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991,17(6):901-912.

    Google Scholar

    [24] Ragueneau O, Tréguer P. Determination of biogenic silica in coastal waters:applicability and limits of the alkaline digestion method[J]. Marine Chemistry, 1994,45(12):43-51.

    Google Scholar

    [25] Weber T, Deutsch C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation[J]. Nature, 2012,489(7416):419-422.

    Google Scholar

    [26] Deutsch C, Weber T. Nutrient ratios as a tracer and driver of ocean biogeochemistry[J]. Annual Review of Marine Science, 2012,4(1):113-141.

    Google Scholar

    [27] Wen H, Qiu Y, Yao L, et al. Organic geochemistry and biomarkers of some Lower Cambrian high-selenium formations in China[J]. Geochimica, 2000,29(1):28-35.

    Google Scholar

    [28] Peters K E, Walters C C, Moldowan J M. The Biomarker Guide:Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History[M]. Cambridge:Cambridge University Press, 2007:704.

    Google Scholar

    [29] Powell T G. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988,333(6174):604.

    Google Scholar

    [30] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia[J]. Organic Geochemistry, 1984,6(0):619-632.

    Google Scholar

    [31] 许东禹, 姚德, 梁宏峰. 多金属结核形成的古海洋环境[M]. 北京:地质出版社, 1994:111.[XU Dongyu, YAO De, LIANG Hongfeng. The Ancient Marine Environment During The Formation of Polymetallic Nodules[M]. Beijing:Geological Publishing House, 1994:111.]

    Google Scholar

    [32] Volkman J K. Lipid Markers for Marine Organic Matter[M]//Volkman J K. Marine Organic Matter:Biomarkers, Isotopes and DNA. Springer Berlin/Heidelberg, 2006:27-70.

    Google Scholar

    [33] Nytoft H P, Bojesen-Koefoed J A, Christiansen FG. C26 and C28-C34 28-norhopanes in sediments and petroleum[J]. Organic Geochemistry, 2000,31(1):25-39.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(939) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint