[1] |
Smith D K, Cann J R, Escartin J. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge[J]. Nature, 2006, 442:440-443.
Google Scholar
|
[2] |
Tucholke B E, Lin J, Kleinrock M C. Mega mullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge[J]. Journal of Geophysical Research, 1998, 103:9857-9866.
Google Scholar
|
[3] |
Ranero C R, Reston T J. Detachment faulting at ocean core complexes[J]. Geology, 1999, 27(11):983-986.
Google Scholar
|
[4] |
李三忠, 吕海青, 侯方辉, 等. 海洋核杂岩[J]. 海洋地质与第四纪地质, 2006, 26(1):47-52.
Google Scholar
[LI Sanzhong, LV Haiqing, HOU Fanghui et al. Ocean complex core[J]. Marine Geology and Quaternary Geology, 2006(26):47-52.]
Google Scholar
|
[5] |
Fujiwara T, Lin J, Matsumoto T, et al. Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty fracture zone in the last 5 Ma[J]. Geochemistry Geophysics Geosystems, 2003, 4(3):1024.
Google Scholar
|
[6] |
Ohara Y, Yoshida T, Kato Y, et al. Giant mega mullion in the Parece Vela back arc basin[J]. Marine Geophysical Research, 2001, 22(1):47-61.
Google Scholar
|
[7] |
Escartin J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere[J]. Nature, 2008, 455(7214):790-794.
Google Scholar
|
[8] |
Blackman D K, Karner G D, Searle R C. Three-dimensional structure of oceanic core complexes:effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge, 30°N[J]. Geochemistry Geophysics Geosystems, 2008, 9(6):Q06007.
Google Scholar
|
[9] |
Blackman D K, Canales J P, Harding A. Geophysical signatures of oceanic core complexes[J]. Geophysical Journal International, 2009, 178(2):593-613.
Google Scholar
|
[10] |
Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7):605-608.
Google Scholar
|
[11] |
Miranda J M, Silva P F, Lourenco N, et al. Study of the Saldanha Massif (MAR, 36° 34' N):Constrains from rock magnetic and geophysical data[J]. Marine Geophysical Research, 2002, 23(4):299-318.
Google Scholar
|
[12] |
Cannat M, Lagabrielle Y, Bougault H, et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge:Geological mapping in the 15°N region[J]. Tectonophysics, 1997, 279(1):193-213.
Google Scholar
|
[13] |
Reston T J, Weinrebe W, Grevemeyer I, et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S[J]. Earth and Planetary Science Letters, 2002, 200(3):255-269.
Google Scholar
|
[14] |
Dick H J B, Natland J H, Alt J C, et al. A long in situ section of the lower ocean crust:results of ODP Leg 176 drilling at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 2000, 179(1):31-51.
Google Scholar
|
[15] |
Searle R C, Cannat M, Fujioka K, et al. FUJI Dome:A large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge[J]. Geochemistry Geophysics Geosystems, 2003, 4(8):9105.
Google Scholar
|
[16] |
Sauter D, Cannat M, Mendel V. Magnetization of 0~26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°~67°E[J]. Geochemistry Geophysics Geosystems, 2008, 9(4):4-23.
Google Scholar
|
[17] |
Mitchell N, Escartin J, Allerton S. Detachment faults at mid-ocean ridges garner interest[J]. Eos, Transactions American Geophysical Union, 1998, 79(10):127-127.
Google Scholar
|
[18] |
Drolia R K, DeMets C. Deformation in the diffuse India-Capricorn-Somalia triple junction from a multi-beam and magnetic survey of the northern Central Indian Ridge, 3°~10°S[J]. Geochemistry Geophysics Geosystems, 2005, 6(10.1029).
Google Scholar
|
[19] |
Okino K, Matsuda K, Christie D M, et al. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance[J]. Geochemistry Geophysics Geosystems, 2004, 5(12):Q12012.
Google Scholar
|
[20] |
Ohara Y, Okino K, Kasahara J. Seismic study on oceanic core complexes in the Parece Vela back-arc basin[J]. Island Arc, 2007, 16(3):348-360.
Google Scholar
|
[21] |
Connelly D P, Copley J T, Murton B J, et al. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading center[J]. Nature Communications, 2012, 3:620.
Google Scholar
|
[22] |
MacLeod C J, Escartin J, Banerji D, et al. Direct geological evidence for oceanic detachment faulting:The Mid-Atlantic Ridge, 15°45' N[J]. Geology, 2002, 30(10):879-882.
Google Scholar
|
[23] |
Reston T J, Weinrebe W, Grevemeyer I, et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S[J]. Earth and Planetary Science Letters, 2002, 200(3):255-269.
Google Scholar
|
[24] |
Blackman D K, Ildefonse B, John B E, et al. the Expedition 304/305 Scientists[C]//Proceedings of the Integrated Ocean Drilling Program, 2006, 304:305.
Google Scholar
|
[25] |
Ildefonse B, Blackman D K, John B E et al. International Ocean Drilling Program Expeditions 304/305 Science Party[J]. Geology, 2007, 35(7):623-626.
Google Scholar
|
[26] |
Escartín J, Mével C, MacLeod C J, et al. Constraints on deformation conditions and the origin of oceanic detachments:The Mid-Atlantic Ridge core complex at 15°45' N[J]. Geochemistry Geophysics Geosystems, 2003, 4(8):1067.
Google Scholar
|
[27] |
Chen Y J. Dependence of crustal accretion and ridge-axis topography on spreading rate, mantle temperature, and hydrothermal cooling[J]. Special Papers-Geological Society of America, 2000:161-180.
Google Scholar
|
[28] |
Sinha M C, Constable S C, Peirce C, et al. Magmatic processes at slow spreading ridges:Implications of the RAMESSES experiment at 57°45' N on the Mid-Atlantic Ridge[J]. Geophysical Journal International, 2003, 135(3):731-745.
Google Scholar
|
[29] |
赵明辉,丘学林,李家彪,等. 慢速、超慢速扩张洋中脊三维地震结构研究进展与展望[J]. 热带海洋学报,2010(6):1-7.[ZHAO Minghui, QIU Xuelin, LI Jiabiao, et al. Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges[J]. Journal of Tropical Oceanography, 2010
Google Scholar
(6):1-7.]
Google Scholar
|
[30] |
Olive J A, Behn M D, Tucholke B E. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement[J]. Nature Geoscience, 2010, 3(7):491-495.
Google Scholar
|
[31] |
Behn M D, Ito G. Magmatic and tectonic extension at mid-ocean ridges:1. Controls on Fault Characteristics[J].Geochemistry,Geophysics,Geosystems,2008, 9(8):1965-1987.
Google Scholar
|
[32] |
Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14' N, MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184(1):37-48.
Google Scholar
|