2013 Vol. 33, No. 3
Article Contents

SU Ming, YANG Rui, ZHANG Cuimei, CONG Xiaorong, LIANG Jinqiang, SHA Zhibin. PROGRESS IN STUDY OF DEEP-WATER DEPOSITIONAL SYSTEMS IN THE NORTHERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA AND ITS IMPLICATIONS FOR GAS HYDRATE RESEARCH[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 109-116. doi: 10.3724/SP.J.1140.2013.03109
Citation: SU Ming, YANG Rui, ZHANG Cuimei, CONG Xiaorong, LIANG Jinqiang, SHA Zhibin. PROGRESS IN STUDY OF DEEP-WATER DEPOSITIONAL SYSTEMS IN THE NORTHERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA AND ITS IMPLICATIONS FOR GAS HYDRATE RESEARCH[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 109-116. doi: 10.3724/SP.J.1140.2013.03109

PROGRESS IN STUDY OF DEEP-WATER DEPOSITIONAL SYSTEMS IN THE NORTHERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA AND ITS IMPLICATIONS FOR GAS HYDRATE RESEARCH

  • Recent researches of marine gas hydrate indicate that the formation, migration and distribution of the gas hydrate have close relationship with deep-water depositional systems. With the development of deep-water observations and drilling technology and the wide use of high-resolution 3D seismic data, the studies on deep-water depositional systems have made great progress. Consequently, the analysis and description of the deep-water deposits in the shallow layers in a promising target area have become a hot and difficult question in gas hydrate exploration. This paper aims to provide a systematic study on the progress of the deep-water depositional system from following aspects:source to sink system, internal architecture description, and complex controlling factors. In combination with the current situation and problems of gas hydrate exploration on the northern continental slope of the South China Sea, some suggestions were proposed, including the analysis of deep-water depositional types and background, the description of the internal architecture and evolution of the deep-water deposits in the shallow layers, and the relationship between the deep-water deposits and gas hydrate in the shallow layers, in order to provide a reference for research and exploration of gas hydrate in the region.
  • 加载中
  • [1] Murray J, Renard A F. Report on Deep-Sea Deposits Based on Specimens Collected During the Voyage of H.M.S. Challenger in the Years 1872-1876[M]. London:Government Printer, Challenger Reports, 1891:525.

    Google Scholar

    [2] Shanmugam G, Moiola R J. Submarine Fan Models Problems and Solutions[C]//In:Bouma A H, Normark W R, Barnes N E.Submarine fans and related turbidite systems.New York:Springer Verlag, 1985:29-34.

    Google Scholar

    [3] Shanmugam G. Deepmarine Sedimentation Depositional Models and Case Histories in Hydrocarbon Exploration and Development[C]//In:Brown G C, Gorsline D S, Schweller W J.Deepmarine Facies Models and the Interrelationship of Depositional Components in Time and Space.San Francisco:SEPM Pacific Section, 1990:199-246.

    Google Scholar

    [4] Normark W R. Turbidite elements and the obsolescence of the suprafan concept[J]. Giornale di Geologia, ser 3a, 1991, 53(2):1-10.

    Google Scholar

    [5] Walker R G. Turbidites and Submarine Fans[C]//In:Walker R G,James,N P. Facies Models:Response to Sea Level Change, GEO text 1. Toronto:Geological Association of Canada, 1992:239-263.

    Google Scholar

    [6] 王英民,王海荣,邱燕,等. 深水沉积的动力学机制和响应[J]. 沉积学报,2007,25(4):495-504.

    Google Scholar

    [WANG Yingmin, WANG Hairong, QIU Yan, et al. Process of dynamics and its response of deep-water sedimentation[J]. Acta Sedimentologica Sinica, 2007, 25(4):495-504.]

    Google Scholar

    [7] 庞雄,陈长民,朱明,等. 深水沉积研究前缘问题[J]. 地质论评,2007,53(1):36-43.

    Google Scholar

    [PAN Xiong, CHEN Changmin, ZHU Ming, et al. Frontier of the deep-water deposition study[J]. Geological Review, 2007, 53(1):36-43.]

    Google Scholar

    [8] 李祥辉,王成善,金玮,等. 深海沉积理论发展及其在油气勘探中的意义[J]. 沉积学报,2009,27(1):77-86.

    Google Scholar

    [LI Xiang, WANG Chengshan, JIN Wei, et al. A review on deep-Sea sedimentation theory:significances to oil-gas exploration[J]. Acta Sedimentologica Sinica, 2009, 27(1):77-86.]

    Google Scholar

    [9] 吴时国,秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报,2009,27(5):922-930.

    Google Scholar

    [WU Shiguo,QIN Yunshan. The research of deepwater depositional system in the Northern South China Sea[J]. Acta Sedimentologica Sinica, 2009, 27(5):922-930.]

    Google Scholar

    [10] 吴因业,朱如凯,罗平,等. 沉积学与层序地层学研究新进展——第18届国际沉积学大会综述[J]. 沉积学报,2011,2(1):199-206.

    Google Scholar

    [WU Yinye, ZHU Rukai, LUO Ping, et al. Advance on sedimentology and sequence stratigraphy:A summary from 18th International Sedimentology Congress[J]. Acta Sedimentologica Sinica, 2011, 2(1):199-206.]

    Google Scholar

    [11] Dickens G R. The potential volume of oceanic methane hydrates with variable external conditions[J]. Organic Geochemistry, 2001, 32(10):1179-1193.

    Google Scholar

    [12] Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11):1971-1992.

    Google Scholar

    [13] Buffett B A,Archer D. Global inventory of methane clathrate:Sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4):185-199.

    Google Scholar

    [14] Milkov A V. Global estimates of hydrate-bound gas in marine sediments:How much is really out there?[J]. Earth-Science review, 2004, 66(3-4):183-197.

    Google Scholar

    [15] Klauda J B,Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2):459-470.

    Google Scholar

    [16] 吴能友,梁金强,王宏斌,等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质,2008,22(3):356-362.

    Google Scholar

    [WU Nengyou, LIANG Jinqinag, WANG Hongbin, et al. Marine gas hydrate system:State of the art[J]. Geoscience, 2008, 22(3):356-362.]

    Google Scholar

    [17] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change:Testing the clathrate gun hypothesis[J]. Geology, 2004, 32(1):53-56.

    Google Scholar

    [18] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1-4):379-401.

    Google Scholar

    [19] Dickens G R, O'Neil J R, Rea D C, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6):965-971.

    Google Scholar

    [20] 王淑红,宋海斌,颜文. 天然气水合物的环境效应[J]. 矿物岩石地球化学通报,2004,23(2):160-165.

    Google Scholar

    [WANG Shuhong, SONG Haibin, YAN Wen. Environmental effects of natural gas hydrate[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2004, 23(2):160-165.]

    Google Scholar

    [21] 叶黎明,罗鹏,杨克红.天然气水合物气候效应研究进展[J]. 地球科学进展,2011,26(5):565-574.

    Google Scholar

    [YE Liming, LUO Peng, YANG Kehong. Advances in climatic effects study of gas hydrates[J]. Advances in Earth Science, 2011, 26(5):565-574.]

    Google Scholar

    [22] Ginsburg G D. Gas hydrate accumulation in deep-water marine sediments[C]//In:Henriet J P, Mienert J. Gas Hydrates:Relevance to World Margin Stability and Climatic Change. London:Geological Society, Special Publications 137, 1998:51-62.

    Google Scholar

    [23] 苏新,宋成兵,方念乔. 东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J]. 地学前缘,2005,12(1):234-242.

    Google Scholar

    [SU Xin, SONG Chengbing, FANG Nianqiao. Variation in grain size of sediments above BSR and correlation with the occurrence of gas hydrates on Hydrates Ridge, East Pacific[J]. Earth Science Frontiers, 2005, 12(1):234-242.]

    Google Scholar

    [24] 王家生,高钰涯,李清,等. 沉积物粒度对水合物形成的制约:来自IODP 311航次证据[J]. 地球科学进展,2007,22(7):659-665.

    Google Scholar

    [WANG Jiasheng, GAO Yuya, LI Qing, et al. Grain size constraint on gas hydrate occurrence:evidence from sediment size during IODP 311[J]. Advances in Earth Science, 2007, 22(7):659-665.]

    Google Scholar

    [25] 陈芳,周洋,苏新,等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质,2011,31(5):95-100.

    Google Scholar

    [CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of northern South China Sea[J]. Marine Geology and Quaternary Geology, 2011, 31(5):95-100.]

    Google Scholar

    [26] 于兴河,张志杰,苏新,等. 中国南海天然气水合物沉积成藏条件初探及其分布[J]. 地学前缘,2004,11(1):311-315.

    Google Scholar

    [YU Xinghe,ZHANG Zhijie, SU Xin, et al. Primary discussion on accumulation conditions for sedimentation of gas hydrate and its distribution in South China Sea[J]. Earth Science Frontiers, 2004, 11(1):311-315.]

    Google Scholar

    [27] 栾锡武,赵克斌,孙冬胜,等. 鄂霍次克海天然气水合物成藏条件分析[J]. 海洋地质与第四纪地质,2006,26(6):91-100.

    Google Scholar

    [LUAN Xiwu, ZHAO Kebin, SUN Dongsheng, et al. Geological factors for the development of gas hydrates in Okhotsk Sea[J]. Marine Geology and Quaternary Geology, 2006, 26(6):91-100.]

    Google Scholar

    [28] Matveva T V, Soloviev V A. Geological control over gas hydrate accumulation on the Blake outer ridge[J]. Geologiya I Geofizika, 2002, 43(7):658-668.

    Google Scholar

    [29] Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India[J]. Marine and Petroleum Geology, 2010, 27(7):1476-1493.

    Google Scholar

    [30] Freire A F M, Matsumoto R, Santos L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10):1967-1978.

    Google Scholar

    [31] Boswell R, Frye M, Shelande D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21:Northern deepwater Gulf of Mexico[J]. Marine and Petroleum Geology, 2011, 1-16. doi:10.1016/j.marpetgeo.2011.08.010.

    Google Scholar

    [32] 王秀娟,吴时国,董冬冬,等. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用[J]. 海洋地质与第四纪地质,2011,31(1):109-118.

    Google Scholar

    [WANG Xiujuan, WU Shiguo, DONG Dongdong, et al. Control of mass transport deposits over the occurrence of gas hydrate in Qiongdongnan Basin[J]. Marine Geology and Quaternary Geology, 2011, 31(1):109-118.]

    Google Scholar

    [33] Driscoll N, Nittrouer C. Source to sink studies[J].Margins Newsletter. 2000, 5:1-3.

    Google Scholar

    [34] 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质,2009, 29(4):1-11.

    Google Scholar

    [WANG Pinxian.Deep sea sediments and earth system[J]. Marine Geology and Quaternary Geology, 2009, 29(4):1-11.]

    Google Scholar

    [35] Chiang C S, Yu H S. Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan[J]. Geo-Marine Letters, 2008, 28(3):161-169.

    Google Scholar

    [36] Baas J H. Sediment gravity flows:Recent advances in process and field analysis-introduction[J]. Sedimentary Geology, 2005, 179(1-2):1-3.

    Google Scholar

    [37] Cartwright J A. Huuse M. 3D seismic technology:the geological Hubble'[J]. Basin Research, 2005, 17(1):1-20.

    Google Scholar

    [38] Posmentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3):367-388.

    Google Scholar

    [39] Antobreh A A,, Krastel S. Morphology seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania:A newly discovered canyon preserved-off a major arid climatic region[J]. Marine and petroleum geology, 2006, 23(1):37-59.

    Google Scholar

    [40] Catterall V, Redfern J, Gawthorpe R, et al. Architectural style and quantification of a submarine channel-Levee system located in a structurally complex area:offshore Nile Delta[J]. Journal of Sedimentary Research, 2010, 80(11):991-1017.

    Google Scholar

    [41] Yuan S G, Wu S G, Thomas L, et al. Fine-grained Pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2009, 26(8):1441-1451.

    Google Scholar

    [42] 苏明,李俊良,姜涛,等. 琼东南盆地中央峡谷的形态及成因[J]. 海洋地质与第四纪地质,2009,29(4):85-93.

    Google Scholar

    [SU Ming, LI Junliang, JIANG Tao, et al. Morphological features and forming mechanism of Central Canyon in the Qiongdongnan basin, northern South China Sea[J]. Marine geology and Quaternary Geology, 2009, 29(4):85-93.]

    Google Scholar

    [43] 何云龙,解习农,陆永潮,等. 琼东南盆地深水块体流构成及其沉积特征[J]. 地球科学——中国地质大学学报,2011,36(5):905-913.

    Google Scholar

    [HE Yunlong, XIE Xinong, LU Yongchao, et al. Architecture and characteristics of mass transport deposits (MTDs) in Qiongdongnan Basin in northern South China Sea[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(5):905-913.]

    Google Scholar

    [44] Alves T M, Cartwright J, Davies R J. Faulting of salt-withdrawal basins during early halokinesis:Effects on the Paleogene Rio Doce Canyon system (Esp rito Santo Basin, Brazil)[J]. AAPG Bulletin, 2009, 93(5):617-652.

    Google Scholar

    [45] Ridente D, Foglini F, Minisini D, et al. Shelf-edge erosion, sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean)[J]. Marine Geology, 2007, 246(2-4):193-207.

    Google Scholar

    [46] Su M, Xie X N, Li J L, et al. Gravity flow on slope and abyssal systems in the Qiongdongnan Basin, northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2011, 85(1):243-253.

    Google Scholar

    [47] 姚伯初,杨木壮,吴时国,等. 中国海域的天然气水合物资源[J]. 现代地质,2008,22(3):333-341.

    Google Scholar

    [YAO Bochu, YANG Muzhuang, WU Shiguo, et al. The gas hydrate resources in the China seas[J]. Geoscience, 2008, 22(3):333-341.]

    Google Scholar

    [48] 邓希光,吴庐山,付少英,等. 南海北部天然气水合物研究进展[J]. 海洋学研究,2008,26(2):67-74.

    Google Scholar

    [DENG Xiguang, WU Lushan, FU Shaoying, et al. The research advances of natural gas hydrates in northern South China Sea[J]. Journal of Marine Sciences, 2008, 26(2):67-74.]

    Google Scholar

    [49] 付少英,陆敬安. 神狐海域天然气水合物的特征及其气源[J]. 海洋地质动态,2010,26(9):6-10.

    Google Scholar

    [FU Shaoying, LU Jingan. The characteristics and origin of gas hydrate in Shenhu area, South China Sea[J]. Marine Geology Letters, 2010, 26(9):6-10.]

    Google Scholar

    [50] 黄霞,祝有海,卢振权,等. 南海北部天然气水合物钻探区烃类气体成因类型研究[J]. 现代地质,2010,24(3):576-580.

    Google Scholar

    [HUANG Haixia, ZHU Youhai, LU Zhenquan, et al. Study on genetic types of hydrocarbon gases from the gas hydrate drilling area, the northern South China Sea[J]. Geoscience, 2010, 24(3):576-580.]

    Google Scholar

    [51] Wang X J, Wu S G, Lee M, et al. Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(9):1625-1633.

    Google Scholar

    [52] 庞雄,申俊,袁立忠,等. 南海珠江深水扇系统及其油气勘探前景[J]. 石油学报,2006,27(3):11-16.

    Google Scholar

    [PANG Xiong, SHEN Jun, YUAN Lizhong, et al. Petroleum prospect in deep-water fan system of the Pearl River in the South China Sea[J]. Acta Petrolei Sinica, 2006, 27(3):11-16.]

    Google Scholar

    [53] 王大伟,吴时国,秦志亮,等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质,2009,29(5):65-72.

    Google Scholar

    [WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large Quaternary mass transport depositions in the slope of South China Sea[J]. Marine Geology and Quaternary Geology, 2009, 29(5):65-72.]

    Google Scholar

    [54] Sun Q L, Wu S G, L dmann Th, et al. Geophysical evidence for cyclic sediment deposition on the southern slope of Qiongdongnan Basin, South China Sea[J]. Marine Geophysical Researches, 2011, 32(3):415-428.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(935) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint