2012 Vol. 32, No. 4
Article Contents

JIN Xiaobo, LIU Chuanlian, CHU Zhihui. COCCOLITHOPHORE RECORDS AND THEIR RESPONSE TO PALEOCLIMATIC AND PALEOENVIROMENTAL CHANGES IN SULAWESI SEA FROM THE LAST DEGLACIAL[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 131-137. doi: 10.3724/SP.J.1140.2012.04131
Citation: JIN Xiaobo, LIU Chuanlian, CHU Zhihui. COCCOLITHOPHORE RECORDS AND THEIR RESPONSE TO PALEOCLIMATIC AND PALEOENVIROMENTAL CHANGES IN SULAWESI SEA FROM THE LAST DEGLACIAL[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 131-137. doi: 10.3724/SP.J.1140.2012.04131

COCCOLITHOPHORE RECORDS AND THEIR RESPONSE TO PALEOCLIMATIC AND PALEOENVIROMENTAL CHANGES IN SULAWESI SEA FROM THE LAST DEGLACIAL

  • To reconstruct the variation in paleoproductivity and nutricline of sea water over the last 20 ka, we analyzed the relative abundance of coccolithophores in deep sea core MD98-2178 (3.62°N,118.70°E), Sulawesi Sea. Three coccolihophores species, Emilania huxleyi, Gephyrocapsa oceanica and Florisphaera profunda, representing 80%~90% relative abundance, dominate the coccolith assemblage. Owing to the absolutely different ecological niche between G.oceanica and F. profunda, they experienced inverse variation trend, the former being sensitive to nutritive material in sea water and representing high productivity, and the latter indicating low productivity and deep nutricline. We suggest that two models can be attributed to coccolihophores responding to paleoenvironment around the timing 13.5 ka in the deglacial. Before 13.5 ka coccolihophores and their productivity mainly responded the nutritive material that transported by run-off, and after 13.5 ka they responded to the intensity of hydrology between sea water and atmosphere. Centennial scale oscillations of F. profunda% are found in the Holocene period, being agreement with solar activity in 100~260 years cycles. We infer that long-term ENSO-like conditions and solar activities could force the variation of nutricline in Holocene.
  • 加载中
  • [1] Winter A, Jordan R W, Roth P H. Biogeography of Living Coccoithophores in Ocean waters[C]//in:Winter A, Siesser W G (Eds.). Coccolithophores. Cambridge University Press, 1994:161-177.

    Google Scholar

    [2] Brown P R, Young J R. Calcareous Nannofossil Biostratigraphy[M]. Kluwer Academic Publishers, 1998:1-15.

    Google Scholar

    [3] Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep Sea Research, part Ⅱ, 2000, 47:1679-1700.

    Google Scholar

    [4] Masumoto Y, Kagimoto T, Yoshida M, et al. Intraseasonal eddies in the Sulawesi Sea simulated in an ocean general circulation model[J]. Geophysical Research Letters, 2001, 28:1631-1634.

    Google Scholar

    [5] Garidel-Thoron T, Beaufort L, Linsley B K, et al. Millennial-scale dynamics of East Asian winter monsoon during the last 200000 years[J]. Paleoceanography, 2001, 16:1-12.

    Google Scholar

    [6] Liu C L, Wang P X, Tian J, et al. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Marine Micropaleontology, 2008, 69:42-51.

    Google Scholar

    [7] Li T G, Zhao J T, Nan Q Y, et al. Paleoproductiviey evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26(5):478-484.

    Google Scholar

    [8] Andruleit H, Luckge A, Weidicke M, et al. Late Quaternary development of the Java upwelling system (eastern Indian Ocean) as revealed by coccolihophores[J]. Marine Micropaleontology, 2008, 69:3-15.

    Google Scholar

    [9] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278:1451-1454.

    Google Scholar

    [10] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.

    Google Scholar

    [11] Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimate in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003, 201:53-65.

    Google Scholar

    [12] Beaufort L, Van der Kaars S, Bassiont F C, et al. Past dynamics of the Australian monsoon:precession, phase and links to the global monsoon concept[J]. Climate of the Past, 2010, 6:695-706.

    Google Scholar

    [13] Beaufort L, Dollfus D. Automatic recognition of coccoliths by dynamical neural networks[J]. Marine Micropaleontology, 2004, 51:57-73.

    Google Scholar

    [14] Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Network, 1999, 12:553-560.

    Google Scholar

    [15] 褚智慧, 翦知湣, 乔培军,等. 末次盛冰期以来苏拉威西海区上层海水对快速气候变化的响应[J]. 第四纪研究, 2011, 31:256-264.[CHU Zhihui, JIAN Zhimin, QIAO Peijun, et al. Responses of the Sulaweisi Sea upper ocean water to the rapid climate changes since the last glacial maximum[J]. Quaternary Sciences, 2011

    Google Scholar

    , 31:256-264.]

    Google Scholar

    [16] Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24:1781-1796.

    Google Scholar

    [17] Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J]. Science, 1990, 249:766-769.

    Google Scholar

    [18] Molfino B, McIntyre A. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas[J]. Paleoceanography, 1990, 5:977-1008.

    Google Scholar

    [19] Mclntyre A, Molfino B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession[J]. Science, 1996, 274:1867-1870.

    Google Scholar

    [20] Solanki S K, Usoskin I G, Kromer B, et al. Unusual activiety of the Sun during recent decades compared to the previous 11000 years[J]. Nature, 2004, 431:1084-1087.

    Google Scholar

    [21] Andruleit H, Rogalla R. Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in surface waters[J]. Marine Geology, 2002, 186:505-526.

    Google Scholar

    [22] Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern oscillation[J]. Quaternary International, 2004, 118-119:127-143.

    Google Scholar

    [23] Kawamura H, Hobourn A, Kuhnt W. Climate variability and land-ocean interactions in the Indo-Pacific Warm Poll:A 460-ka palynological and organic geochemical record from the Timor Sea[J]. Marine Micropaleontology, 2006, 59:1-14.

    Google Scholar

    [24] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449:452-456.

    Google Scholar

    [25] Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 1996, 382:241-244.

    Google Scholar

    [26] 丁旋, Guichard F, Bassinot F, 等. 印度尼西亚弗洛勒斯海LGM以来的古海洋学记录[J]. 地球科学-中国地质大学学报, 2005, 30(5):565-572.

    Google Scholar

    [DING Xuan, Guichard F, Bassinot F, et al. Paleoceanography of the last glacial maximum in the Flores Sea of the Indonesian Archipelago[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(5):565-572.]

    Google Scholar

    [27] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.

    Google Scholar

    [28] Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300:1737-1739.

    Google Scholar

    [29] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.

    Google Scholar

    [30] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:link to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.

    Google Scholar

    [31] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445:74-77.

    Google Scholar

    [32] Girffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2:636-639.

    Google Scholar

    [33] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294:2130-2136.

    Google Scholar

    [34] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297:222-226.

    Google Scholar

    [35] Clement A C, Seager R, Cane M A. Obital controls on the El Nino/Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14(4):441-456.

    Google Scholar

    [36] Clement A C, Seager R, Cane M A. Suppression of El Nino during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography, 2000, 15(6):731-737.

    Google Scholar

    [37] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of Elno/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420:162-165.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(892) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint