[1] |
Winter A, Jordan R W, Roth P H. Biogeography of Living Coccoithophores in Ocean waters[C]//in:Winter A, Siesser W G (Eds.). Coccolithophores. Cambridge University Press, 1994:161-177.
Google Scholar
|
[2] |
Brown P R, Young J R. Calcareous Nannofossil Biostratigraphy[M]. Kluwer Academic Publishers, 1998:1-15.
Google Scholar
|
[3] |
Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep Sea Research, part Ⅱ, 2000, 47:1679-1700.
Google Scholar
|
[4] |
Masumoto Y, Kagimoto T, Yoshida M, et al. Intraseasonal eddies in the Sulawesi Sea simulated in an ocean general circulation model[J]. Geophysical Research Letters, 2001, 28:1631-1634.
Google Scholar
|
[5] |
Garidel-Thoron T, Beaufort L, Linsley B K, et al. Millennial-scale dynamics of East Asian winter monsoon during the last 200000 years[J]. Paleoceanography, 2001, 16:1-12.
Google Scholar
|
[6] |
Liu C L, Wang P X, Tian J, et al. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Marine Micropaleontology, 2008, 69:42-51.
Google Scholar
|
[7] |
Li T G, Zhao J T, Nan Q Y, et al. Paleoproductiviey evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26(5):478-484.
Google Scholar
|
[8] |
Andruleit H, Luckge A, Weidicke M, et al. Late Quaternary development of the Java upwelling system (eastern Indian Ocean) as revealed by coccolihophores[J]. Marine Micropaleontology, 2008, 69:3-15.
Google Scholar
|
[9] |
Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278:1451-1454.
Google Scholar
|
[10] |
Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
Google Scholar
|
[11] |
Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimate in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003, 201:53-65.
Google Scholar
|
[12] |
Beaufort L, Van der Kaars S, Bassiont F C, et al. Past dynamics of the Australian monsoon:precession, phase and links to the global monsoon concept[J]. Climate of the Past, 2010, 6:695-706.
Google Scholar
|
[13] |
Beaufort L, Dollfus D. Automatic recognition of coccoliths by dynamical neural networks[J]. Marine Micropaleontology, 2004, 51:57-73.
Google Scholar
|
[14] |
Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Network, 1999, 12:553-560.
Google Scholar
|
[15] |
褚智慧, 翦知湣, 乔培军,等. 末次盛冰期以来苏拉威西海区上层海水对快速气候变化的响应[J]. 第四纪研究, 2011, 31:256-264.[CHU Zhihui, JIAN Zhimin, QIAO Peijun, et al. Responses of the Sulaweisi Sea upper ocean water to the rapid climate changes since the last glacial maximum[J]. Quaternary Sciences, 2011
Google Scholar
, 31:256-264.]
Google Scholar
|
[16] |
Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24:1781-1796.
Google Scholar
|
[17] |
Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J]. Science, 1990, 249:766-769.
Google Scholar
|
[18] |
Molfino B, McIntyre A. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas[J]. Paleoceanography, 1990, 5:977-1008.
Google Scholar
|
[19] |
Mclntyre A, Molfino B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession[J]. Science, 1996, 274:1867-1870.
Google Scholar
|
[20] |
Solanki S K, Usoskin I G, Kromer B, et al. Unusual activiety of the Sun during recent decades compared to the previous 11000 years[J]. Nature, 2004, 431:1084-1087.
Google Scholar
|
[21] |
Andruleit H, Rogalla R. Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in surface waters[J]. Marine Geology, 2002, 186:505-526.
Google Scholar
|
[22] |
Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern oscillation[J]. Quaternary International, 2004, 118-119:127-143.
Google Scholar
|
[23] |
Kawamura H, Hobourn A, Kuhnt W. Climate variability and land-ocean interactions in the Indo-Pacific Warm Poll:A 460-ka palynological and organic geochemical record from the Timor Sea[J]. Marine Micropaleontology, 2006, 59:1-14.
Google Scholar
|
[24] |
Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449:452-456.
Google Scholar
|
[25] |
Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 1996, 382:241-244.
Google Scholar
|
[26] |
丁旋, Guichard F, Bassinot F, 等. 印度尼西亚弗洛勒斯海LGM以来的古海洋学记录[J]. 地球科学-中国地质大学学报, 2005, 30(5):565-572.
Google Scholar
[DING Xuan, Guichard F, Bassinot F, et al. Paleoceanography of the last glacial maximum in the Flores Sea of the Indonesian Archipelago[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(5):565-572.]
Google Scholar
|
[27] |
McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.
Google Scholar
|
[28] |
Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300:1737-1739.
Google Scholar
|
[29] |
Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.
Google Scholar
|
[30] |
Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:link to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.
Google Scholar
|
[31] |
Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445:74-77.
Google Scholar
|
[32] |
Girffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2:636-639.
Google Scholar
|
[33] |
Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294:2130-2136.
Google Scholar
|
[34] |
Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297:222-226.
Google Scholar
|
[35] |
Clement A C, Seager R, Cane M A. Obital controls on the El Nino/Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14(4):441-456.
Google Scholar
|
[36] |
Clement A C, Seager R, Cane M A. Suppression of El Nino during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography, 2000, 15(6):731-737.
Google Scholar
|
[37] |
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of Elno/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420:162-165.
Google Scholar
|