2012 Vol. 32, No. 4
Article Contents

CHEN Mengsha, HUANG Baoqi. EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 97-105. doi: 10.3724/SP.J.1140.2012.04097
Citation: CHEN Mengsha, HUANG Baoqi. EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 97-105. doi: 10.3724/SP.J.1140.2012.04097

EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA

  • Benthic foraminifera picked out from the interval of 43.02~26.27 mbsf (meters below seafloor) of ODP 807(3°36.42'N,156°37.49'E,water depth 2 803.8 m,length 822.9 m)on the Ontong-Java Plateau, western Pacific was studied for understanding the changes in paleoproductivity and its relation with deep water circulation during the period of 2.5~1.6 MaBP. The benthic foraminifera accumulation rate (BFAR), Epifaunal/Infaunal ratio (E/I), percentage of Uvigerina spp. and total organic carbon (TOC%) were used as the proxies of paleoproductivity in this study. Results show that the change in paleoproductivity was generaly high in glacials but low in interglacials during the period of 2.5~1.6 MaBP., except Bulimina alazanensis, of which the paleopruductivity was low in glacials but high in interglacials. It may suggest that B. alazanensis, opposite to the others, preferred a warmer environment with lower nutrients. The benthic foraminiferal fauna was dominated by Uvigerina spp. in the samples, indicating that the western Pacific deep water was under the control of the North Pacific Deep Water Mass during Early Pleistocene.
  • 加载中
  • [1] Haywood A M, Dowsett H J, Valdes P J, et al. Introduction. Pliocene climate, processes and problems[J]. Philosophical Transactions, 2009, 367:3-17.

    Google Scholar

    [2] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001. 292:686-693.

    Google Scholar

    [3] Wara M W, Ravelo A C, Delaney M L. Permanent El Ni No-like conditions during the Pliocene warm period[J]. Science, 2005, 309:758-761.

    Google Scholar

    [4] Russon T, Elliot M, Kissel C, et al. Middle-late Pleistocene deep water circulation in the southwest subtropical Pacific[J]. Paleoceanography, 2009, 24:PA4205:1-16.

    Google Scholar

    [5] Clark P U, Alley R B, Pollard D. Northern Hemisphere Ice-Sheet Influences on Global Climate Change[J]. Science, 1999, 286:1104-1111.

    Google Scholar

    [6] 马文涛, 田军, 李前裕, 晚上新世赤道太平洋气候转型和北极冰盖扩张的轨道驱动[J]. 科学通报, 2009, 54(22):3537-3545.

    Google Scholar

    [MA Wentao, TIAN Jun, LI Qianyu. Astronomically modulated late Pliocene equatorial Pacific climate transition and Northern Hemisphere ice sheet expansion[J]. Chinese Science Bulletin, 2010, 55(2):212-220.]

    Google Scholar

    [7] Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago[J]. Nature, 2005, 433:821-825.

    Google Scholar

    [8] Russon T, Elliot M, Sadekov A, et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool[J]. Geophysical Research Letters, 2010, 37:L11601, 1-5.

    Google Scholar

    [9] 金海燕, 翦知湣, 成鑫荣, 等.早更新世赤道太平洋上部水体结构的东西向不对称格局的形成[J]. 科学通报,2011,56(20):1635-1641.

    Google Scholar

    [JIN Haiyan, JIAN Zhimin, CHENG Xinrong, et al. Early Pleistocene formation of the asymmetric east-west pattern of upper water structure in the equatorial Pacific Ocean[J]. Chinese Science Bulletin, 2011, 56(21):2251-2257.]

    Google Scholar

    [10] Marlow J R, Lange C B, Wefer G, et al. Upwelling intensification as part of the Pliocene-Pleistocene climate transition[J]. Science, 2000, 290:2288-2291.

    Google Scholar

    [11] Kwiek P B,Ravelo A C. Pacific Ocean intermediate and deep water circulation during the Pliocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154:191-217.

    Google Scholar

    [12] Prentice M L, Friez J K, Simonds G G, et al. Neogene trends in planktonic foraminifer δ18O from site 807:implications for globalice volume and western equatorial Pacific sea surface temperatures[A]//Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993, 281-305.

    Google Scholar

    [13] Sliva I P. Paleocene through middle Eocene planktonic foraminifers from Hole 807C, Ontong Java Plateau[A].Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993,103-111.

    Google Scholar

    [14] Gourlan A T, Meynadier L, All gre C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma:Neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1-2):353-364.

    Google Scholar

    [15] Fantlea M S,DePaoloa D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A:The Ca2+(aq) calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2524-2546.

    Google Scholar

    [16] Houedec S L, Meynadier L, Allegre C J. 80 Myrhigh resolution Nd isotopes record in Western Pacific (ODP 807)[J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73:A741.

    Google Scholar

    [17] 金海燕, 翦知湣, 刘东升. 西太平洋翁通-爪哇海台晚第四纪浮游有孔虫群与古温度变化[J]. 海洋地质第四纪地质, 2003, 23(4):65-71.

    Google Scholar

    [JIN Haiyan, JIAN Zhimin, LIU Dongsheng. Late quaternary variations of plaktonic foraminiferal assemblage and paleo-temperature of Ontong-Java plateau, west Pacific[J]. Marine Geology & Quaternary Geology, 2003, 23(4):65-71.]

    Google Scholar

    [18] 张江勇, 汪品先, 成鑫荣, 等. 赤道西太平洋晚第四纪古生产力变化:ODP807A孔的记录[J]. 地球科学——中国地质大学学报, 2007, 32(3):303-312.

    Google Scholar

    [ZHANG Jiangyong, WANG Pinxian, CHENG Xinrong, et al. Late Quaternary variations of productivity in the western Equatorial Pacific Ocean:Records from ODP Hole 807A[J]. Earth Science-Journal of China University of Geoscience, 2007, 32(3):303-312.]

    Google Scholar

    [19] 刘传联, 张拭颖, 金海燕, 等. 暖池区1.53Ma以来上层海水变化的颗石藻证据[J]. 同济大学学报(自然科学版), 2005, 33(9

    Google Scholar

    ):1172-1176.[LIU Chuanlian, ZHANG Shiying, JIN Haiyan, et al. Coccolith evidence of upper ocean water variations for past 1.53 Ma in western Pacific Warm Pool[J]. Journal of Tongji University(Natural Science), 2005, 33(9):1172-1176.]

    Google Scholar

    [20] 吴旻哲, 乔培军, 邵磊. 西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录[J]. 海洋地质第四纪地质, 2010. 30(2):67-74.

    Google Scholar

    [WU Minzhe, QIAO Peijun, SHAO Lei. Element geochemical record of the western Pacific ocean site ODP 807A:implication for the middle Pleistocene climate transition[J]. Marine Geology & Quaternary Geology, 2010, 30(2):67-74.]

    Google Scholar

    [21] Zhang J, Wang P, Li Q, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr:Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007, 64:121-140.

    Google Scholar

    [22] Keigwin L D. North Pacific deep water formation during the latest glaciation[J]. Nature, 1987, 330:362-364.

    Google Scholar

    [23] Shipboard Scientific Party. Site 807[A]//Proceedings of the Ocean Drilling Program, Initial Report[C]. College Station,Texas:Ocean Drill. Prog., 1991, 369-493.

    Google Scholar

    [24] Loeblich A R, Tappan J H. Foraminiferal Genera and Their Classification[M]. New York:Van nostrand reinhold company, 1988.

    Google Scholar

    [25] Ujiie H. Bathyal Benthic Foraminifera in a Piston Core East off the Miyako Islands, Ryukyu Island Arc[M]. Ryukyus:Bull. Coll. Sci. Univ., 1990, 49:1-60.

    Google Scholar

    [26] Lutze G F. Depth distribution of benthic foraminifera on the continental margin of northwest Africa[J].Meteor' Forschungsergeb. Reihe C, 1980, 28:133-169.

    Google Scholar

    [27] Corliss B H, Chen C. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implication[J]. Geology, 1988, 16:716-719.

    Google Scholar

    [28] Herguera J C, Berger W H. Paleoproductivity from benthic foraminifera abundance:Glacial to postglacial change in the west-equatorial[J]. Geology, 1991, 19(12):1173-1176.

    Google Scholar

    [29] Hergrera J C. Last glacial paleoproductivity patterns in the eastern equatorial Pacific, benthic foraminifira records[J]. Marine Micropaleontology, 2000, 40:259-275.

    Google Scholar

    [30] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22(8):719-722.

    Google Scholar

    [31] Li Q, McGowran B. Miocene upwelling events:Neritic foraminiferal evidence from southern Australia[J]. Australian Journal of Earth Sciences, 1994, 41(6):593-603.

    Google Scholar

    [32] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20:PA1003:1-17.

    Google Scholar

    [33] Lisiecki L E, Lisiecki P A. Application of dynamic programming to the correlation of paleoclimate records[J]. Paleoceanography, 2002, 17(4):1049:1-12.

    Google Scholar

    [34] 郭建卿, 成鑫荣, 陈荣华, 等. 西太平洋暖池核心区上新世以来浮游有孔虫氧同位素特征及古海洋变化[J]. 海洋地质第四纪地质, 2010, 30(3):87-95.

    Google Scholar

    [GUO Jianqing, CHENG Xinrong, CHEN Ronghua, et al. Oxygen isotope characteristic and paleoceanographic riations of the western Pacific warm pool since Pliocene[J]. Marine Geology & Quaternary Geology, 2010, 30(3):87-95.]

    Google Scholar

    [35]

    [36] Gupta A K, Sarkar S, Mukherjee B. Paleoceanographic changes during the past 1.9 Myr at DSDP Site 238, Central Indian Ocean Basin:Benthic foraminiferal proxies[J]. Marine Micropaleontology, 2006, 60:157-166.

    Google Scholar

    [37] 陈双喜, 南青云, 李铁刚, 等. 高有机质输入对底栖有孔虫的抑制作用-以西北太平洋菲律宾海MD06-3054孔为例[J]. 第四纪研究, 2011, 31(2):292-298.

    Google Scholar

    [CHEN Suangxi, NAN Qanqingyun, LI Tiegang, et al. Inhibiting effect of high organic matter influx on the bloom of benthic foraminifera fauna-an example from core MD06-3054 in Philippine Sea, northwestern Pacific[J]. Quaternary Sciences, 2011, 31(2):292-298.]

    Google Scholar

    [38] Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java plateau[A].Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993, 573-584.

    Google Scholar

    [39] Resig J M, Cheong H-K. Pliocene-Holocene Benthic foraminiferal assemblages and water mass history,ODP806B,western equatorial Pacific[J]. Micropaleontology, 1997, 43(4):419-439.

    Google Scholar

    [40] Wang P X, Li Q Y, The South China Sea Paleoceanoggraphy and Sedimentology[M], Springer, 2009, Vol.13.

    Google Scholar

    [41] 黄宝琦, 翦知湣, 汪品先, 晚上新世南海北部底栖有孔虫Bulimina alazanensis含量变化及其原因探讨[J]. 科学通报, 2007, 52:313-317.[Huang Baoqi, JIAN Zhimin, WANG Pinxian. Benthic foraminiferal fauna turnover at 2.

    Google Scholar

    1 Ma in the northern South China Sea[J]. Chinese Science Bulletin, 2007, 51(6):839-843.]

    Google Scholar

    [42] Hess S, Kuhnt W. Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143):the benthic foraminiferal record[J]. Marine Micropaleontology, 2005, 54:63-87.

    Google Scholar

    [43] Altenbach A V, Pflaumann U, Schiebel R, et al. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon[J]. Journal of Foraminiferal Research, 1999, 29(3):173-185.

    Google Scholar

    [44] Wang L W, Lin H L. Data report:carbonate and organic carbon contents of sediments from sites 1143 and 1146 in the South China Sea[A]//Proceedings of the Ocean Drilling Program, Scientific Results[C]. Texas A & M University:Ocean Drilling Program, 2002, 1-9.

    Google Scholar

    [45] 黄宝琦, 成鑫荣, 翦知湣, 等. 晚上新世以来南海北部上部水体结构变化及东亚季风演化[J]. 第四纪研究, 2004, 24(1):110-115.

    Google Scholar

    [HUANG Bbaoqi, CHENG Xinrong, JIAN Zhimin, et al. Variations in upper ocean structure in the South China Sea and the evolution of the east Asian monsoons since late Pliocene[J]. Quaternary Sciences, 2004, 24(1):110-115.]

    Google Scholar

    [46] An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.

    Google Scholar

    [47] 李铁刚, 赵京涛, 孙荣涛, 等. 250kaB.P.以来西太平洋暖池中心区——Ontong Java海台古生产力演化[J]. 第四纪研究, 2008, 28(3):447-457.

    Google Scholar

    [LI Tiegang, ZHAO Jingtao, SUN Rongtao, et al. Paleopriductivity evolution in the Ontong Java Plateau——center of the western Pacific warm pool During the last 250ka[J]. Quaternary Sciences, 2008, 28(3):447-457.]

    Google Scholar

    [48] Heinz P,Hemleben C. Regional and seasonalvariations of recentbenthicdeep-seaforaminifera in the ArabianSea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2003, 50(3):435-477.

    Google Scholar

    [49] Kurbjeweit F, Schmiedl G, Schiebel R, et al. Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2000, 47(14):2913-2955.

    Google Scholar

    [50] Heinz P, Hemleben C. Foraminiferal response to the Northeast Monsoon in the western and southern Arabian Sea[J]. Marine Micropaleontology, 2006, 58(2):103-113.

    Google Scholar

    [51] Licari L, Schumacher S, Wenzh fer F, et al. Communities and microhabitats of living benthic foraminifera from the tropical East Atlantic:impact of different productivity regimes[J]. Journal of Foraminiferal Research, 2003, 33(1):10-31.

    Google Scholar

    [52] Macdonald A M, Mecking S, Robbins P E, et al. The WOCE-era 3-D Pacific Ocean circulation and heat budget[J]. Progress In Oceanography, 2009, 82(4):281-325.

    Google Scholar

    [53] Bostock H C, Opdyke B N, Williams M J M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(7):847-859.

    Google Scholar

    [54] Sokolov S, Rintoul S. Circulation and water masses of the southwest Pacific:WOCE Section P11, Papua New Guinea to Tasmania[J]. Journal of Marine Research, 2000, 58(2):223-268.

    Google Scholar

    [55] Murray J W. Ecology and Palaeoecology of Benthic Foraminifera[M]. Harlow:Longman Scientific & Technical, 1991.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(868) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint