2012 Vol. 32, No. 1
Article Contents

LU Hongfeng, LIU Jian, CHEN Fang, CHENG Sihai, LIAO Zhiliang. SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98. doi: 10.3724/SP.J.1140.2012.01093
Citation: LU Hongfeng, LIU Jian, CHEN Fang, CHENG Sihai, LIAO Zhiliang. SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98. doi: 10.3724/SP.J.1140.2012.01093

SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR

  • The Northeastern part of the South China Sea (SCS) is rich in methane and there is methane seepage on the seafloor. Six sediment cores recovered from the northeastern SCS show that both sulfate and methane contents decrease with depth in the consuming zone of sulfate and methane. Headspace methane of these cores increases with depth and reaches an anomalous high at the bottom of cores. By extrapolation, the depth of sulfate-methane interface (SMI) in the cores of HD109, HD170, HD196A, HD200, HD319 and GC10 are located at 704cmbsf, 911cmbsf, 728cmbsf, 636cmbsf, 888cmbsf, 792cmbsf, respectively, indicating very shallow SMI depths. Strong methane seepage will intensify the co-consumption of sulfate and methane, leading to the shift of SMI depths towards the seafloor. The shallow SMIs, which often occur in gas hydrate localities worldwide, imply that the northeastern SCS is a good gas hydrate-prone setting.
  • 加载中
  • [1] Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria[C]//Biology of Anaerobic Microorganisms. 1988:469-585.

    Google Scholar

    [2] Barnes R O,Goldberg E D. Methane production and consumption in anaerobic marine sediments[J]. Geology, 1976,4:297-300.

    Google Scholar

    [3] Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976,28:337-344.

    Google Scholar

    [4] Martens C S, Berner R A. Interstitial water chemistry of Long Island Sound sediments, I, dissolved gases[J]. Limnology and Oceanography, 1977,22:10-25.

    Google Scholar

    [5] Reeburgh W S. A major sink and flux control for methane in marine sediments:anaerobic consumption[C]//The Dynamic Environment of the Ocean Floor. Lexington Books. D.C. Heath, Lexington, 1982:203-217.

    Google Scholar

    [6] Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7):655-658.

    Google Scholar

    [7] Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999,159:131-154.

    Google Scholar

    [8] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2000,164:301-312.

    Google Scholar

    [9] Hinrichs K U, Boetius A. The anaerobic oxidation of methane:New insights in microbial ecology and biogeochemistry[M]//Ocean Margin Systems. Springer-Verlag, Berlin, 2002:457-477.

    Google Scholar

    [10] Devol A H, Anderson J J, Kuivila K M, et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48:993-1004.

    Google Scholar

    [11] Iversen N, J rgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from the Kattegat and Skagerrack (Denmark)[J]. Limnology and Oceanography, 1985, 30:944-955.

    Google Scholar

    [12] Guo T M, Wu B H, Zhu Y H, et al. A review on the gas hydrate research in China[J]. Journal of Petroleum Science and Engineering, 2004, 41:11-20.

    Google Scholar

    [13] McDonnell S L, Max M D, Cherkis M Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17:929-936.

    Google Scholar

    [14] 祝有海,张光学,卢振权,等. 南海天然气水合物成矿条件与找矿前景[J]. 石油学报,2001,22(5):6-10.

    Google Scholar

    [ZHU Youhai, ZHANG Guangxue, LU Zhenquan,et al. Gas hydrate in the South China Sea:background and indicators[J]. Acta Petrolei Sinica, 2001,22(5):6-10.]

    Google Scholar

    [15] 吴必豪,张光学,祝有海,等. 中国近海天然气水合物的研究进展[J]. 地学前缘,2003, 10(1):177-189.

    Google Scholar

    [WU Bihao, ZHANG Guangxue, ZHU Youhai, et al. Progress of gas hydrate investigation in china offshore[J]. Earth Science Frontiers,2003,10(1):177-189.]

    Google Scholar

    [16] Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005,22:613-621.

    Google Scholar

    [17] 陆红锋, 刘坚, 陈芳, 等. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J]. 地学前缘, 2005,12(3):268-276.

    Google Scholar

    [LU Hongfeng, LIU Jian, CHEN Fang, et al. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the off shore area of southwest Taiwan, South China Sea:Evidence for gas hydrates occurrence[J]. Earth Science Frontiers,2005, 12(3):268-276.]

    Google Scholar

    [18] 栾锡武. 天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质,2009,29(2):91-102.

    Google Scholar

    [LUAN Xiwu. Sulfate-methane interface:the upper boundary of gas hydrate zone[J]. Marine Geology and Quaternary Geology,2009,29(2):91-102.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(989) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint