2011 Vol. 31, No. 3
Article Contents

HOU Zhanfang, ZHANG Jun, SONG Chunhui, LI Jijun, LIU Jia, LIU Shanpin, HUI Zhengchuang, PENG Tingjiang. THE OXYGEN AND CARBON ISOTOPIC RECORDS OF MIOCENE SEDIMENTS IN THE TIANSHUI BASIN OF THE NORTHESTERN TIBETAN PLATEAU AND THEIR PALEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 69-78. doi: 10.3724/SP.J.1140.2011.03069
Citation: HOU Zhanfang, ZHANG Jun, SONG Chunhui, LI Jijun, LIU Jia, LIU Shanpin, HUI Zhengchuang, PENG Tingjiang. THE OXYGEN AND CARBON ISOTOPIC RECORDS OF MIOCENE SEDIMENTS IN THE TIANSHUI BASIN OF THE NORTHESTERN TIBETAN PLATEAU AND THEIR PALEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 69-78. doi: 10.3724/SP.J.1140.2011.03069

THE OXYGEN AND CARBON ISOTOPIC RECORDS OF MIOCENE SEDIMENTS IN THE TIANSHUI BASIN OF THE NORTHESTERN TIBETAN PLATEAU AND THEIR PALEOCLIMATIC IMPLICATIONS

  • The Tianshui basin of the northeastern Tibetan Plateau is located in the intersection of the eastern monsoon area, the northwest arid area and the Qinghai-Tibet Plateau cold and arid regions, so it is very sensitive to climatic change. Based on the δ18O, δ13C and TOC data along the Xiashan section, this paper deals with the Miocene climatic evolution of the Tianshui basin. The climatic change in the region can be divided into five stages in 17.02~12.26 Ma, 12.26~10.92 Ma, 10.92~8.50 Ma, 8.50~7.050 Ma, 7.05~6.05 Ma respectively. During the period of 17.02~12.26 Ma, the climate was very warm and humid under high precipitation; in the interval from 12.26 to 10.92 Ma, the climate was relative cold and humid; from 10.92 to 8.50 Ma, with less precipitation, the climate was relative cold and dry; in the phase 8.50~7.05 Ma, the climate was relative warm and humid; from 7.05 to 6.05 Ma, the climate was relative cold and dry. Global cooling may be the reason for the relative cold and wet climate during 12.26~10.92 Ma. The average δ18O values during the 10.92~8.50 Ma period are 1.5‰ more positive than that of the period prior to 10.92 Ma, probably due to the elevation of the Qinghai-Tibet Plateau that was sufficient to change the atmospheric circulation, by blocking the moisture from the Indian Ocean or south Pacific into the Tianshui basin. Since 7.05 Ma, the climate has been relatively cold and dry, marking the initiation of aridification in the inland Asian. All of the information is important to the understanding of the history of up-lifting of the Tibetan Plateau in-depth, the aridification in Asia interior as well as the climatic evolution in this region.
  • 加载中
  • [1] Miller K G, Fairbanks R G, Mountain G S. Tertiary oxygen isotope synthesis, sealevel history, and continental margin erosion[J]. Paleoeanography, 1987, 2(1):1-19.

    Google Scholar

    [2] Zacho J, Pagani M, Sloan L, et al.Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292:686-693.

    Google Scholar

    [3] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West[J]. J Geophys.Res., 1989, 94:18409-18427.

    Google Scholar

    [4] Li Jijin. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change[M].Lanzhou University Press, 1995:38-39.

    Google Scholar

    [5] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased up lift of the Himalaya Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.

    Google Scholar

    [6] DeMenocal P B, Rind D. Sensitivity of Asian and African climate to variation in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography[J]. J Geol.Res., 1993, 98:7265-7286.

    Google Scholar

    [7] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophsics, 1993, 31:357-396.

    Google Scholar

    [8] Rayma M E, Ganley K, Carter S, et al. Millennial-scale climate instability during the early Pleistocene epoch[J]. Nature, 1989, 392:699-702.

    Google Scholar

    [9] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224.

    Google Scholar

    [10] Manabe S, Terpstra T B. The effects of mountains of the general circulation of the atmosphere by numerical experiments[J]. Journal of Atomospheric Science, 1974, 31:3-42.

    Google Scholar

    [11] Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes[J]. Science, 1990, 247:192-194.

    Google Scholar

    [12] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. Journal of Geology, 1993, 101:177-190.

    Google Scholar

    [13] DeMenocal P B, Rind D. Sensitivity of Asian and African climate to variation in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography[J]. J. Geol. Res.,1993,98:7265-7287.

    Google Scholar

    [14] Felzer B, Oglesby R, Hyman D. Sensitivity of the global climate system to changes in northern hemisphere ice sheet size using the NCAR CCM1[C]//Proceedings of the Sixth Symposium on Global Change Studies, January 15-20, Dallas, TX. American Meteorological Society. 1995:202-206.

    Google Scholar

    [15] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in Northern Pakistan[J]. Nature, 1989, 342:163-166.

    Google Scholar

    [16] Quade J, Cerling T E. Expansion of C4grasses in the Late Miocene of Northern Pakistan:Evidence from stable isotopes in paleosols[J]. Palaogeogr.,Palaeoclimatol., Palaeoecol., 1995, 115(1-4):91-116.

    Google Scholar

    [17] Dettan D L, Kohn M J, Quade J, et al. Seasonal stable isotope evidence for a strong Asian monsoon throughout the last 10.7 Ma[J]. Geology, 2001,29:31-34.

    Google Scholar

    [18] Dettman D L, Fang Xiaomin, Carmala N Garzione, et al. Uplift-driven change at 12 Ma:a long δ18O record from the NE margin of the Tibetan Plateau[J]. Earth Planet. Sci.Lett.,2003, 214:267-277.

    Google Scholar

    [19] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased up lift of the Himalaya Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.

    Google Scholar

    [20] Sun D H, Liu D S, et al. Magnetostratigraphy and climate implications of the red-clay sequences in the Loess Plateau in China[J]. Science in China(Series D), 1997, 27:265-270.

    Google Scholar

    [21] Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, North-central China and the implications for paleomonsoon evolution[J]. Palaogeogr., Palaeoclimatol., Palaeoecol., 1999, 152(1~2):49-66.

    Google Scholar

    [22] Ding Z L,Yang S L, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-tern Asian monsoon evolution in the last 7.0 Ma[J]. Earth Planet. Sci. Lett., 2001, 185(1-2):99-109.

    Google Scholar

    [23] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002, 416:159-163.

    Google Scholar

    [24] Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227:721-725.

    Google Scholar

    [25] Rea D K, Snoeckx H, JosephL H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13:215-224.

    Google Scholar

    [26] 王志才,张培震,张广良,等.西秦岭北缘构造带的新生代构造活动-兼论对青藏高原东北缘形成过程的指示意义[J].地学前缘,2006,13(4):119-135.

    Google Scholar

    [WANG Zhicai, ZHANG Peide, ZHANG Guangliang, et al. Tertiary tectonic activities of the north frontal fault zone of the west Qinling mountains:implications for the growth of the northeastern margin of the Qinghai-Tibetan plateau[J].Earth Science Frontiers, 2006, 13(4):119-135.]

    Google Scholar

    [27] Li J J, Fang X M, Ma H Z, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during late Cenozoic[J]. Science in China (Series D), 1996, 39(4):380-390.

    Google Scholar

    [28] 郑德文,张培震,万景林,等.青藏高原东北边缘晚新生代构造变形的时序-临夏盆地碎屑岩颗粒磷灰石裂变径迹记录[J].中国科学,2003,33(增刊):190-198.[ZHENG Dewen, ZHANG Peizhen, WAN Jinglin, et al. The late-Cenozoic tectonic distortion of northeast margin of Tibetan Plateau-the record of apatite fission track dating in Linxia[J]. Science in China(Series D), 2003

    Google Scholar

    , 33(Suppl):190-197.]

    Google Scholar

    [29] 陕西省地质局区域地质测量队.1:20万天水(幅)地质图及说明书[M].1968:1-20.

    Google Scholar

    [Shanxi Provincial Bureau of Geology, Regional Geological Survey Team,1:200000 geological maps and manual in Tianshui[M].1969:1-20.]

    Google Scholar

    [30] Li J J, Zhang J, Song C H, et al. Miocene Bahean stratigraphy in the Longzhong Basin, Northern Central China and its implications in environmental change[J]. Science in China (Series D), 2006, 49(12):1270-1279.

    Google Scholar

    [31] Alonso-Zarza A M, Zhao Z Z, Song C H, et al. Mudflat/distal fan and shallow lake sedimentation (Upper Vallesian-Turolian) in the Tianshui Basin,Central China:Evidence against Miocene eolian loess[J].Sedimentary Geology, 2009, doi:10.1016/j.sedgeo.2009.03.01.

    Google Scholar

    [32] 潘美慧,宋春晖,李吉均,等.甘肃天水地区中新世古土壤的微型态特征及其古气候意义[J].土壤学报, 2009,46(16):578-585.

    Google Scholar

    [PAN Meihui,SONG Chunhui, LI Jijun, et al. Micromorphological characteristics of Miocene palaeosol and their paleoenvironment significance in Tianshui,Gansu[J]. Acta Pedologica Sinica, 2009, 46(4):578-585.]

    Google Scholar

    [33] Miall A D. Principles of Sedimentary Basin Analysis[M]. New York:Springer, 1984:668.

    Google Scholar

    [34] Kaakinena A, Lunkka J P. Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling mountains in Shaanxi, China[J]. J Asian Earth Sci., 2003, 22:67-78.

    Google Scholar

    [35] Gasse F, Fontes J C, Plaziat P, Kaczmarska I, et al. A Biological remains, geochemistry and stable isotope for the reconstruction of environmental and hydrological changes in the Holocene lakes form north Sahara[J]. Palaogeogr., Palaeoclimatol., Palaeoecol.,1987, 60:1-46.

    Google Scholar

    [36] Li H C, Ku T L.δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes[J]. Palaogeogr., Palaeoclimatol., Palaeoecol., 1997, 133:69-80.

    Google Scholar

    [37] Bender M M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation[J]. Phytochemistry, 1971, 10:1239-1245.

    Google Scholar

    [38] Brown W V. The Kranz syndrome and its subtypes in grass systems[J]. Men.Torrey Bot.Club.,1977,23:1-97.

    Google Scholar

    [39] Farquhar G D, Ehleringer J R. Carbon isotopic discrimination and photosynthesis[J]. A. Rev. Plant Physiol, Mol.Biol.1989, 40:503-537.

    Google Scholar

    [40] Cerling T E, Quade J. Carbon isotope in soils and palaeosols as ecology and palaeoecology indicates[J]. Nature, 1989, 341:138-139.

    Google Scholar

    [41] Wang Y, Cerling T E. Fossil horses and carbon isotopes:new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America[J]. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1994, 107:269-279.

    Google Scholar

    [42] Ehleringer J R, Cooper T A. Correlations between carbon isotope ratio and microhabitat in desert plants[J]. Oecologia, 1988, 76:562-566.

    Google Scholar

    [43] Aravena R. Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating[J]. Quaternary Research, 1992, 37:333-345.

    Google Scholar

    [44] Ding Z L, Yang S L.C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau:evidence from pedogenic carbonate δ13C[J]. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2000, 160:291-299.

    Google Scholar

    [45] Wang Y, Deng T A. 25m.y.isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth Planet[J]. Sci. Lett., 2005, 236:322-338.

    Google Scholar

    [46] An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J].Geology, 2005, 33(9):705-708.

    Google Scholar

    [47] Talbot M R, Kelts K. Palaeolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments[C]//Lacustrine Basin Exploration:Case Studies and Modern Analogs.Am.Assoc.Pet.Geol.Mem.1990, 50:99-112.

    Google Scholar

    [48] Wang X, Veizer J. Respriation-photosynthesis balance of terrestrial aquatic ecosystems, Ottawa area, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(22):3775-3786.

    Google Scholar

    [49] Hsieh J C C, Chaswick O A, Kelly E F, et al. Oxygen isotopic composition of soil water:quantifying evaporation and transpiration[J].Geoderma, 1998, 82:269-293.

    Google Scholar

    [50] Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth's history for paleoclimatic studies[J]. Science, 1992, 255:56-66.

    Google Scholar

    [51] Yang P, Sun Z C, Li D M, et al.Ostracoda extinction and explosion events of the Mesozoic Cenozoic in Qaidam Basin, Northwest China[J]. J. Palaeogeogr., 2000,2(3):69-74.

    Google Scholar

    [52] Friedman I O,Neil J R. Data of Geochemistry[C]//Prof. Paper 440-KK,USGS, 1977, chap.Kk.

    Google Scholar

    [53] Rozanski K, Araguas-Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation[C]//Climate Change in Continental Isotopic Records. Geophys.Monogr.78, Am.Geophys. Union, Washington, DC, 1993:1-36.

    Google Scholar

    [54] Hellstrom J, McCulloch M, Stone J. A detailed 31000 year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems[J]. Quat.Res., 1998, 50:167-178.

    Google Scholar

    [55] 丁林,许强,张利云,等.青藏高原河流氧同位素区域变化特征与高度预测模型建立[J].第四纪研究,2009,29(1):1-12.

    Google Scholar

    [DING Lin,XU Qiang, ZHANG Liyun, et al. Regional variation of river water oxygen isotope and empirical elevation prediction models in Tibetan Plateau[J].Quaternary Science, 2009, 29(1):1-12.]

    Google Scholar

    [56] Tian L, Masson Delmotte V, Stievenard M, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J]. Journal of Geophysical Research, 2001, 106(D22):28081-28088.

    Google Scholar

    [57] Hou Shugui, Masson-Delmotte V, Qin Dahe, et al. Modern precipitation stable isotope vs elevation gradients in the High Himalaya. Comment on"A new approach to stable isotope-based paleoaltimetry:Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene" by David B. Rowleyet al[J]. Earth Planet. Sci. Lett.,2001,188:253-268;2003, 209(3-4):395-399.

    Google Scholar

    [58] Quade J, Garzione C. Paleoelevation reconstruction using pedogenic carbonates[J]. Reviews in Mineralogy & Geochem istry, 2007, 66:53-87.

    Google Scholar

    [59] Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetean Plateau:Paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28:339-342.

    Google Scholar

    [60] Ngarzione C, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalayan from δ18O vs, altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth Planet. Sci.Lett., 2000, 183:215-229.

    Google Scholar

    [61] Spcer R A, Harris R B, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421:622-624.

    Google Scholar

    [62] Blisniuk P M, acker B R, Glodny J, et al. Normal faulting in Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412:628-632.

    Google Scholar

    [63] 赵泉鸿, 翦知湣,王吉良,等. 南海北部晚新生代氧同位素地层学[J]. 中国科学D辑, 2001(10):800-807.[ZHAO Quanhong, JIAN Zhimin, WANG Jiliang, et al. Neogene oxygen isotopic stratigraphy, ODP Site 1148

    Google Scholar

    , northern South China Sea[J]. Science in China(Series D), 2001(10), 934-942.]

    Google Scholar

    [64] 方小敏,徐先海,宋春晖,等.临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程的原因[J].第四纪研究, 2007, 27(6):989-1000.

    Google Scholar

    [FANG Xiaomin, XU Xianhai,SONG Chunhui, et al. High resolution rockmagnetic records Cenozoic sediments in the Linxia Basin and their implications on drying of Asian inland[J]. Quaternary Sciences, 2007, 27(6):989-1000.]

    Google Scholar

    [65] 徐先海,方小敏,宋春晖,等.临夏盆地新生代沉积物粒度记录与亚洲内陆干旱化[J].湖泊科学,2008, 20(1):65-75.

    Google Scholar

    [XU Xianhai, FANG Xiaomin, SONG Chunhui, et al. Grain-size records of Cenozoic Lacustrine from Linxia Basin and the aridification of Asian inland[J]. J. Lake Sci., 2008, 20(1):65-75.]

    Google Scholar

    [66] Larson H C, Saunders A D, Clift P D, et al.Seven million years of glaciation in Greenland[J]. Science,1994,264:952-955.

    Google Scholar

    [67] Jansen E, Siohol M J. Reconstruction of glaciation over the past 6 Ma from iceborn deposits in the Norwegian Sea[J]. Nature, 1991,349:600-603.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1394) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint