[1] |
Kvenvolden K A,Barnard L A. Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76[C]//Initial Reports of the Deep Sea Drilling Project, Washington D. C.:U. S. Governmental Printing Office, 1983,76:353-365.
Google Scholar
|
[2] |
Hollister C D,Ewing J I. Initial Reports of the Deep Sea Drilling Project Leg 11[R]. Washington D. C.:U. S. Governmental Printing Office, 1972.
Google Scholar
|
[3] |
Kvenvolden K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3420-3426.
Google Scholar
|
[4] |
Crouch E M, Heilmann-Clausen C, Brinkhuis H, et al. Global dinoflagellate event associated with the late Paleocene thermal maximum[J]. Geology, 2001, 29(4):315-318.
Google Scholar
|
[5] |
Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:Past developments and future research directions[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2006, 232(2-4):362-407.
Google Scholar
|
[6] |
Reeburgh W H, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep Sea Research Part A-Oceanographic Research Papers, 1991, 38:S1189-S1210.
Google Scholar
|
[7] |
党宏月, 宋林生, 李铁刚,等. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12):1306-1313.
Google Scholar
[DANG Hongyue, SONG Linsheng, LI Tiegang, et al. Progress in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science, 2005, 20(12):1306-1313.]
Google Scholar
|
[8] |
Reeburgh W H. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
Google Scholar
|
[9] |
Wegener G,Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J]. Biogeosciences, 2009, 6(5):867-876.
Google Scholar
|
[10] |
Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine Sediments[J]. Nature, 1999, 398:802-805.
Google Scholar
|
[11] |
Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
Google Scholar
|
[12] |
Orphan V J, Hinrichs K U, Ussler W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001a, 67(4):1922-1934.
Google Scholar
|
[13] |
Pancost R D, Hopmans E C, Simmimghe Damste J S, et al. Archaeal lipids in Mediterranean cold seeps:Molecular proxies for anaerobic methane oxidation[J]. Geochimica et Cosmochimica Acta, 2001,65(10):1611-1627.
Google Scholar
|
[14] |
Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology,2005, 71(1):467-479.
Google Scholar
|
[15] |
Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica et Cosmochimica Acta, 2006, 70(21):5336-5355.
Google Scholar
|
[16] |
Neue H. Methane emission from rice fields:Wetland rice fields may make a major contribution to global warming[J]. BioScience, 1993, 43(7):466-473.
Google Scholar
|
[17] |
Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:A review[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2002, 81:271-282.
Google Scholar
|
[18] |
Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-1 and ANME-2 communities[J]. Environmental Microbiology, 2005, 7(1):98-106.
Google Scholar
|
[19] |
Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2633-2640.
Google Scholar
|
[20] |
Greinert J, Bohrmann G, Elvert M. Stromatolitic fabric of authigenic carbonate crusts:result of anaerobic methane oxidation at cold seeps in 4850m water depth[J]. International Journal of Earth Sciences, 2002, 91(4):698-711.
Google Scholar
|
[21] |
Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5):613-621.
Google Scholar
|
[22] |
Lin S, Hsieh W C, Lim Y C, et al. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):883-902.
Google Scholar
|
[23] |
Huang C Y, Chien C W, Zhao M X, et al. Geological investigations of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):679-702.
Google Scholar
|
[24] |
Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001b, 293(5529):484-487.
Google Scholar
|
[25] |
Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583):1013-1015.
Google Scholar
|
[26] |
Brocks J J,Pearson A. Building the biomarker tree of life[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):233-258.
Google Scholar
|
[27] |
Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(7):585-589.
Google Scholar
|
[28] |
Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37(4):484-500.
Google Scholar
|
[29] |
Stadnitskaia A, Bouloubassi I, Elvert M, et al. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats[J]. Organic Geochemistry, 2008, 39(8):1007-1014.
Google Scholar
|
[30] |
Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6):295-300.
Google Scholar
|
[31] |
Elvert M, Hopmans E C, Treude T, et al. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach[J]. Geobiology, 2005, 3(3):195-209.
Google Scholar
|
[32] |
Pancost R D, Sinninghe Damst J S, Lint S D, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applide and Environmental Microbiology, 2000, 66(3):1126-1132.
Google Scholar
|
[33] |
Bian L, Hinrichs K U, Xie T, et al. Algal and archaeal polyisoprenoids in a recent marine sediment:molecular isotopic evidence for anaerobic oxidation of methane[J]. Geochemistry Geophysics Geosystems, 2001, 2:2000GC000112.
Google Scholar
|
[34] |
Zhang C L, Pancost R D, Sassen R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34(6):827-836.
Google Scholar
|
[35] |
Pancost R D,Sinninghe Damst J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1-4):29-58.
Google Scholar
|
[36] |
Zhang C L, Huang Z Y, Cantu J, et al. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrate in the Gulf of Mexico[J]. Applied and Environmrntal Microbiology, 2005, 71(4):2106-2112.
Google Scholar
|
[37] |
Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7663-7668.
Google Scholar
|
[38] |
Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11111-11116.
Google Scholar
|
[39] |
Niemann H,Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12):1668-1677.
Google Scholar
|
[40] |
Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227(1-3):31-47.
Google Scholar
|
[41] |
Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3):291-314.
Google Scholar
|
[42] |
Thiel V, Peckmann J, Seifert R, et al. Highly isotopically depleted isoprenoids:Molecular markers for ancient methane venting[J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24):3959-3966.
Google Scholar
|
[43] |
Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001, 73(2):97-112.
Google Scholar
|
[44] |
Elvert M, Suess E, Greinert J, et al. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone[J]. Organic Geochemistry, 2000, 31:1175-1187.
Google Scholar
|
[45] |
Aloisi G, Bouloubassi I, Heijs S K, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth and Planetary Science Letters, 2002, 203(1):195-203.
Google Scholar
|
[46] |
Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31(12):1685-1701.
Google Scholar
|
[47] |
Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.
Google Scholar
|
[48] |
Brooks J M, Kennicutt M C, Fry R R, et al. Thermogenic Gas Hydrates in the Gulf of Mexico[J]. Science, 1984, 225:409-411.
Google Scholar
|
[49] |
Lein A Y. Authigenic carbonate formation in the ocean[J]. Lithology and Mineral Resources, 2004, 39(1):1-30.
Google Scholar
|
[50] |
Lein A Y, Gal'chenko V F, Pokrovskii B G. Marine carbonate nodules as a result of microbial methane oxidation of gas hydrate methane in the Sea of Okhotsk[J]. Geokhimiya, 1989, 10:1396-1406.
Google Scholar
|
[51] |
Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4):451-463.
Google Scholar
|
[52] |
Valentine D L,Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2:477-484.
Google Scholar
|
[53] |
Orphan V J, Ussler W, Naehr T H, et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California[J]. Chemical Geology, 2004, 205(3-4):265-289.
Google Scholar
|
[54] |
Gilhooly Ⅲ W P, Carney R S, Macko S A. Relationships between sulfide-oxidizing bacterial mats and their carbon sources in northern Gulf of Mexico cold seeps[J]. Organic Geochemistry, 2007, 38(3):380-393.
Google Scholar
|
[55] |
Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9):2287-2298.
Google Scholar
|
[56] |
Summons R E, Franzmann P D, Nichols P D. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J]. Organic Geochemistry, 1998, 28(7-8):465-475.
Google Scholar
|
[57] |
Teece M A, Fogel M L, Dollhopf M E. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions[J]. Organic Geochemistry, 1999, 30(12):1571-1579.
Google Scholar
|
[58] |
Wang G Z, Spivack A J, Rutherford S, et al. Quantification of co-occurring reaction rates in deep subseafloor sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(14):3479-3488.
Google Scholar
|
[59] |
Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149.
Google Scholar
|
[60] |
Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem:The lost city hydrothermal field[J]. Science, 2005, 307(5714):1428-1434.
Google Scholar
|
[61] |
Boetius A. Lost city life[J]. Science, 2005, 307(5714):1420-1422.
Google Scholar
|
[62] |
Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[J]. Marine Geology, 2006, 226(1-2):81-95.
Google Scholar
|