2010 Vol. 30, No. 2
Article Contents

DING Ling, ZHAO Meixun. APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133
Citation: DING Ling, ZHAO Meixun. APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133

APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES

  • Methane flux generally controls cold seep biogeochemical processes and ecosystem. Anaerobic oxidation of methane (AOM) is the major sink of CH4, which is mediated by methane-oxidizing archaea and sulfate-reducing bacteria, and the mechanisms of AOM can be traced using biomarkers and their carbon isotope ratios. Biomarkers for these microbes are depleted in 13C, and the δ13C values of sulfate-reducing bacteria biomarkers are enriched compared to those of archaeal biomarkers, indicating CH4 carbon has flowed from archaea to bacteria during AOM. Methane flux also determines the microbial community structure of cold seeps, with the ANME-2 cluster dominating when CH4 flux is high. Cold seep microbial community structure changes can be traced by the two biomarker indices, OH-AR and BIPH, with higher values for both when ANME-2 cluster dominates. Thus, biomarkers and their δ13C values can not only provide evidence suppoting the occurrence of AOM, but they can also be used to study environments and microbial consortium structure for both modern and ancient cold seeps.
  • 加载中
  • [1] Kvenvolden K A,Barnard L A. Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76[C]//Initial Reports of the Deep Sea Drilling Project, Washington D. C.:U. S. Governmental Printing Office, 1983,76:353-365.

    Google Scholar

    [2] Hollister C D,Ewing J I. Initial Reports of the Deep Sea Drilling Project Leg 11[R]. Washington D. C.:U. S. Governmental Printing Office, 1972.

    Google Scholar

    [3] Kvenvolden K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3420-3426.

    Google Scholar

    [4] Crouch E M, Heilmann-Clausen C, Brinkhuis H, et al. Global dinoflagellate event associated with the late Paleocene thermal maximum[J]. Geology, 2001, 29(4):315-318.

    Google Scholar

    [5] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:Past developments and future research directions[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2006, 232(2-4):362-407.

    Google Scholar

    [6] Reeburgh W H, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep Sea Research Part A-Oceanographic Research Papers, 1991, 38:S1189-S1210.

    Google Scholar

    [7] 党宏月, 宋林生, 李铁刚,等. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12):1306-1313.

    Google Scholar

    [DANG Hongyue, SONG Linsheng, LI Tiegang, et al. Progress in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science, 2005, 20(12):1306-1313.]

    Google Scholar

    [8] Reeburgh W H. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.

    Google Scholar

    [9] Wegener G,Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J]. Biogeosciences, 2009, 6(5):867-876.

    Google Scholar

    [10] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine Sediments[J]. Nature, 1999, 398:802-805.

    Google Scholar

    [11] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.

    Google Scholar

    [12] Orphan V J, Hinrichs K U, Ussler W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001a, 67(4):1922-1934.

    Google Scholar

    [13] Pancost R D, Hopmans E C, Simmimghe Damste J S, et al. Archaeal lipids in Mediterranean cold seeps:Molecular proxies for anaerobic methane oxidation[J]. Geochimica et Cosmochimica Acta, 2001,65(10):1611-1627.

    Google Scholar

    [14] Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology,2005, 71(1):467-479.

    Google Scholar

    [15] Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica et Cosmochimica Acta, 2006, 70(21):5336-5355.

    Google Scholar

    [16] Neue H. Methane emission from rice fields:Wetland rice fields may make a major contribution to global warming[J]. BioScience, 1993, 43(7):466-473.

    Google Scholar

    [17] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:A review[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2002, 81:271-282.

    Google Scholar

    [18] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-1 and ANME-2 communities[J]. Environmental Microbiology, 2005, 7(1):98-106.

    Google Scholar

    [19] Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2633-2640.

    Google Scholar

    [20] Greinert J, Bohrmann G, Elvert M. Stromatolitic fabric of authigenic carbonate crusts:result of anaerobic methane oxidation at cold seeps in 4850m water depth[J]. International Journal of Earth Sciences, 2002, 91(4):698-711.

    Google Scholar

    [21] Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5):613-621.

    Google Scholar

    [22] Lin S, Hsieh W C, Lim Y C, et al. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):883-902.

    Google Scholar

    [23] Huang C Y, Chien C W, Zhao M X, et al. Geological investigations of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):679-702.

    Google Scholar

    [24] Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001b, 293(5529):484-487.

    Google Scholar

    [25] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583):1013-1015.

    Google Scholar

    [26] Brocks J J,Pearson A. Building the biomarker tree of life[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):233-258.

    Google Scholar

    [27] Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(7):585-589.

    Google Scholar

    [28] Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37(4):484-500.

    Google Scholar

    [29] Stadnitskaia A, Bouloubassi I, Elvert M, et al. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats[J]. Organic Geochemistry, 2008, 39(8):1007-1014.

    Google Scholar

    [30] Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6):295-300.

    Google Scholar

    [31] Elvert M, Hopmans E C, Treude T, et al. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach[J]. Geobiology, 2005, 3(3):195-209.

    Google Scholar

    [32] Pancost R D, Sinninghe Damst J S, Lint S D, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applide and Environmental Microbiology, 2000, 66(3):1126-1132.

    Google Scholar

    [33] Bian L, Hinrichs K U, Xie T, et al. Algal and archaeal polyisoprenoids in a recent marine sediment:molecular isotopic evidence for anaerobic oxidation of methane[J]. Geochemistry Geophysics Geosystems, 2001, 2:2000GC000112.

    Google Scholar

    [34] Zhang C L, Pancost R D, Sassen R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34(6):827-836.

    Google Scholar

    [35] Pancost R D,Sinninghe Damst J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1-4):29-58.

    Google Scholar

    [36] Zhang C L, Huang Z Y, Cantu J, et al. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrate in the Gulf of Mexico[J]. Applied and Environmrntal Microbiology, 2005, 71(4):2106-2112.

    Google Scholar

    [37] Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7663-7668.

    Google Scholar

    [38] Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11111-11116.

    Google Scholar

    [39] Niemann H,Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12):1668-1677.

    Google Scholar

    [40] Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227(1-3):31-47.

    Google Scholar

    [41] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3):291-314.

    Google Scholar

    [42] Thiel V, Peckmann J, Seifert R, et al. Highly isotopically depleted isoprenoids:Molecular markers for ancient methane venting[J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24):3959-3966.

    Google Scholar

    [43] Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001, 73(2):97-112.

    Google Scholar

    [44] Elvert M, Suess E, Greinert J, et al. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone[J]. Organic Geochemistry, 2000, 31:1175-1187.

    Google Scholar

    [45] Aloisi G, Bouloubassi I, Heijs S K, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth and Planetary Science Letters, 2002, 203(1):195-203.

    Google Scholar

    [46] Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31(12):1685-1701.

    Google Scholar

    [47] Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.

    Google Scholar

    [48] Brooks J M, Kennicutt M C, Fry R R, et al. Thermogenic Gas Hydrates in the Gulf of Mexico[J]. Science, 1984, 225:409-411.

    Google Scholar

    [49] Lein A Y. Authigenic carbonate formation in the ocean[J]. Lithology and Mineral Resources, 2004, 39(1):1-30.

    Google Scholar

    [50] Lein A Y, Gal'chenko V F, Pokrovskii B G. Marine carbonate nodules as a result of microbial methane oxidation of gas hydrate methane in the Sea of Okhotsk[J]. Geokhimiya, 1989, 10:1396-1406.

    Google Scholar

    [51] Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4):451-463.

    Google Scholar

    [52] Valentine D L,Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2:477-484.

    Google Scholar

    [53] Orphan V J, Ussler W, Naehr T H, et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California[J]. Chemical Geology, 2004, 205(3-4):265-289.

    Google Scholar

    [54] Gilhooly Ⅲ W P, Carney R S, Macko S A. Relationships between sulfide-oxidizing bacterial mats and their carbon sources in northern Gulf of Mexico cold seeps[J]. Organic Geochemistry, 2007, 38(3):380-393.

    Google Scholar

    [55] Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9):2287-2298.

    Google Scholar

    [56] Summons R E, Franzmann P D, Nichols P D. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J]. Organic Geochemistry, 1998, 28(7-8):465-475.

    Google Scholar

    [57] Teece M A, Fogel M L, Dollhopf M E. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions[J]. Organic Geochemistry, 1999, 30(12):1571-1579.

    Google Scholar

    [58] Wang G Z, Spivack A J, Rutherford S, et al. Quantification of co-occurring reaction rates in deep subseafloor sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(14):3479-3488.

    Google Scholar

    [59] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149.

    Google Scholar

    [60] Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem:The lost city hydrothermal field[J]. Science, 2005, 307(5714):1428-1434.

    Google Scholar

    [61] Boetius A. Lost city life[J]. Science, 2005, 307(5714):1420-1422.

    Google Scholar

    [62] Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[J]. Marine Geology, 2006, 226(1-2):81-95.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1467) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint