2010 Vol. 30, No. 2
Article Contents

WU Minzhe, QIAO Peijun, SHAO Lei. ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 67-74. doi: 10.3724/SP.J.1140.2010.02067
Citation: WU Minzhe, QIAO Peijun, SHAO Lei. ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 67-74. doi: 10.3724/SP.J.1140.2010.02067

ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION

  • The element geochemical analysis of the upper 60.77 m section of ODP Hole 807A reveals climatic variations since 3.2 Ma. Significant changes in element concentrations during the Middle Pleistocene Transition (MPT) are marked by decreases of elements related closely to terrigenous clasts and increases of biogenic elements. Because there was little change in the provenance of terrigenous elements, variations in the terrigenous clastic content were mainly affected by the reduction itself, indicating the weaker wind transportation. The obvious increase of biogenic elements was attributed to the marked enhancement of the ocean productivity during the MPT. Furthermore, the spectral analysis of the sum rare earth elements (∑REE) shows the orbital characteristics of tropical climate changes from 41 ka to 100 ka periods.
  • 加载中
  • [1] Prell W L. Oxygen and carbon isotope stratigraphy of the Quaternary of Hole 502B:Evidence for two modes of isotopic variability[J]. Initial Reports of the DSDP, 1982, 68:455-464.

    Google Scholar

    [2] Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary Ice Age[J]. Oceanus, 1993, 36:53-56.

    Google Scholar

    [3] Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4:353-412.

    Google Scholar

    [4] Jian Z M, Wang P X, Chen M T, et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea[J]. Paleoceanogr., 2000, 15(2):229-243.

    Google Scholar

    [5] Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quat. Sci. Rev., 1994, 13:39-70.

    Google Scholar

    [6] Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998, 1:113-118.

    Google Scholar

    [7] Shackleton N J.The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000,289:1897-1902.

    Google Scholar

    [8] 汪品先, 田军, 成鑫荣. 第四纪冰期旋回转型在南沙深海的记录[J]. 中国科学D辑, 2001, 31(10):793-799.

    Google Scholar

    [WANG Pinxian, TIAN Jun, CHENG Xinrong. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Sci. China (Ser. D), 2001, 31(10):793-799.]

    Google Scholar

    [9] De Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005, 433:294-298.

    Google Scholar

    [10] Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition:A deep sea carbon isotopic perspective[J]. Paleoceanogr., 1997, 12(4):546-559.

    Google Scholar

    [11] 田军, 汪品先, 成鑫荣. 南沙ODP1143站有孔虫同位素变化对地球轨道驱动的响应[J]. 中国科学D辑, 2004, 34(5):452-460.

    Google Scholar

    [TIAN Jun, WANG Pinxian, CHENG Xinrong. Responses of foraminiferal isotopic variations at ODP Site 1143 in the southern South China Sea to orbital forcing[J]. Sci. China (Ser. D), 2004, 34(5):452-460.]

    Google Scholar

    [12] Berger W H, Jansen E. Mid-Pleistocene climate shift-The Nansen connection[J]. Geophys. Monogr., 1994, 84:295-311.

    Google Scholar

    [13] Shackleton N J. The 100000 year ice age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289:1897-1902.

    Google Scholar

    [14] 金海燕. 南海北部中更新世气候转型期高分辨率古海洋学研究[D]. 上海:同济大学,2007.[JIN Haiyan. High-resolution paleoceanographic study during the Mid-Pleistocene Climate Transition in the Northern South China Sea[D]. Shanghai:Tongji University, 2007.]

    Google Scholar

    [15] 金海燕, 翦知湣, 成鑫荣.赤道西太平洋暖池中更新世过渡期的古海洋学变化[J].海洋地质与第四纪地质,2006, 26(6):71-80.

    Google Scholar

    [JIN Haiyan, JIAN Zhimin, CHENG Xinrong. Paleoceanographic variations of the Western Pacific Warm Pool during the Middle Pleistocene Climate Transition[J]. Mar. Geol & Quat. Geol., 2006, 26(6):71-80.]

    Google Scholar

    [16] 李前裕, 汪品先, 陈木宏,等. 中更新世气候转型时期南海生态环境的南北差异[J]. 地球科学进展, 2006,21(8):781-792.

    Google Scholar

    [LI Qianyu, WANG Pinxian, CHEN Muhong, et al. Paleoecological-environmental contrasts between the Southern and Northern South China Sea during Mid-Pleistocene Climate Transition[J]. Advances in Earth Sci., 2006, 21(8):781-792.]

    Google Scholar

    [17] Schulz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computer Geosci., 2002, 28:421-426.

    Google Scholar

    [18] Prentice M L, Friez J K, Simonds G G, et al. Neogene trends in planktonic foraminifer δ18O from site 807:implications for global ice volume and western equatorial Pacific sea-surface temperatures[J]. ODP Scientific Results, 1993, 130:281-305.

    Google Scholar

    [19] Walter E D, James V G, David Z P. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochim. Cosmochim. Acta, 1997,61(21):4507-4518.

    Google Scholar

    [20] Berger W H, Kroenke L W.Eolian deposition on the Ontong Java Plateau since the Oligocene:unmixing a record of multiple dust sources[J]. ODP Scientific Results, 1993, 130:471-490.

    Google Scholar

    [21] Jian Z M, Zhao Q H, Cheng X R, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeo., Palaeo., Palaeo., 2003, 193:425-442.

    Google Scholar

    [22] Stax R, Stein R.Long-term changes in the accumulation of organic carbon in Neogene sediments,Ontong Java plateau[J]. ODP Scientific Results, 1993,130:573-585.

    Google Scholar

    [23] Clark P U, Alley R B, Pollard D. Northern hemisphere ice-sheet influences on global climate change[J]. Science, 1999, 286:1104-1111.

    Google Scholar

    [24] Dupont L M, Donner B, Schneider R R, et al. Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma[J]. Geology, 2001, 29:195-198.

    Google Scholar

    [25] 刘传联, 张拭颖, 金海燕,等. 暖池区1.53 Ma以来上层海水变化的颗石藻证据[J]. 同济大学学报:自然科学版, 2005, 33(9):1172-1176.

    Google Scholar

    [LIU Chuanlian, ZHANG Shiying, JIN Haiyan, et al. Coccolith evidence of upper ocean water variations for past 1.53 Ma in Western Pacific Warm Pool[J]. Journal of Tongji University(Natural Science), 2005, 33(9):1172-1176.]

    Google Scholar

    [26] 刘传联, 成鑫荣, 王汝建,等. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义[J]. 地球科学——中国地质大学学报, 2005,30(5):559-602.

    Google Scholar

    [LIU Chuanlian, CHENG Xinrong, WANG Rujian, et al. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the Western Pacific Warm Pool and their palaeoceanographical significance[J]. Earth Sci. J. China Univ. Geosci., 2005, 30(5):559-602.]

    Google Scholar

    [27] 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-55.

    Google Scholar

    [LI Shuanglin, LI Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea[J]. Mar. Geol & Quat. Geol., 2001, 21(3):51-55.]

    Google Scholar

    [28] 徐方建, 李安春, 徐兆凯,等. 东海内陆架沉积物稀土元素地球化学特征及物源意义[J]. 中国稀土学报, 2009,27(4):574-581.

    Google Scholar

    [XU Fangjian, LI Anchun, XU Zhaokai,et al. Rare earth element geochemistry in inner shelf of the East China Sea and implication for sediment provenance[J]. J. Chinese Rare Earth Soc., 2009, 27(4):574-581.]

    Google Scholar

    [29] 韦刚健,刘颖,李献华,等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25.

    Google Scholar

    [WEI Gangjian, LIU Ying, LI Xianhua,et al. Excess Al in the sediments from South China Sea[J]. Bull. Mineral., Petrol. Geochem., 2003,22(1):23-25.]

    Google Scholar

    [30] Murray R W, Leinen N. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochim. Cosmochim. Acta, 1996, 60(20):3869-3878.

    Google Scholar

    [31] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Rev. Geophys., 1995, 33(2):241-265.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(977) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint