2009 Vol. 29, No. 4
Article Contents

HAN Zuozhen, CHEN Jitao, CHI Naijie, WANG Zhaopeng, YANG Renchao, FAN Aiping. MICROBIAL CARBONATES: A REVIEW AND PERSPECTIVES[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38. doi: 10.3724/SP.J.1140.2009.04029
Citation: HAN Zuozhen, CHEN Jitao, CHI Naijie, WANG Zhaopeng, YANG Renchao, FAN Aiping. MICROBIAL CARBONATES: A REVIEW AND PERSPECTIVES[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38. doi: 10.3724/SP.J.1140.2009.04029

MICROBIAL CARBONATES: A REVIEW AND PERSPECTIVES

  • The authors reviewed and summarized the historical and current status and the perspectives of the study on microbial carbonates based on the previous researches. Microbial carbonates were formed by calcified microbes (e.g.cyanobacteria, microalgae, etc.) under the combination of microbial processes, sedimentary processes, and diagenetic processes. Microbial carbonates consist of a variety of types, including stromatolites, thrombolites, dendrolites, leiolites, oncolites, and laminites. Microbial carbonates developed in all geological time, with its great abundance in Meso-Neoproterozoic, showing general declining trend in the Phanerozoic. In addition, microbes play an important role in the formation of primary dolomite, carbonate mud mounds, and the fifth primary sedimentary structures. Recently, the development of the research on microbial carbonates supplements and completes the genesis and classification of carbonates.
  • 加载中
  • [1] Burne R V, Moore L S. Microbialites:organose-sedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2:241-254.

    Google Scholar

    [2] 戴永定, 陈孟获, 王尧. 微生物岩研究的发展与展望[J]. 地球科学进展, 1996, 11(2):209-215.

    Google Scholar

    [DAI Yongding, CHEN Menghuo, WANG Yao. Development and perspective of research for microbialites[J]. Progress in Earth Science, 1996, 11(2):209-215.]

    Google Scholar

    [3] Riding R. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47:179-214.

    Google Scholar

    [4] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185:229-238.

    Google Scholar

    [5] 梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-232.

    Google Scholar

    [MEI Mingxiang. Revised classification of microbial carbonates:complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-232.]

    Google Scholar

    [6] 朱士兴. 中国叠层石[M]. 天津:天津大学出版社, 1993.[ZHU Shixing. The Stromatolites of China[M]. TianJin:Tianjin University Press, 1993.]

    Google Scholar

    [7] 梁玉左, 朱士兴, 高振家,等. 叠层石研究的新进展-微生物岩[J]. 中国区域地质, 1995, 1:43,57-65.

    Google Scholar

    [LIANG Yuzuo, ZHU Shixing, GAO Zhenjia, et al. New progress in the study of stromatolites——microbiolite[J]. Regional Geology of China, 1995, 1:43,57-65.]

    Google Scholar

    [8] 杨浩, 王永标, 陈林,等. 地球微生物过程与潜在烃源岩的形成:钙质微生物岩[J]. 地球科学, 2007, 32(6):797-802.

    Google Scholar

    [YANG Hao, WANG Yongbiao, CHEH Lin, et al. Calci-microbialite as a kind of potential hydrocarbon source rock and its geomicrobiological processes[J]. Earth Science, 2007, 32(6):797-802.]

    Google Scholar

    [9] 史晓颖, 张传恒, 蒋干清,等. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质, 2008, 22(5):669-682.

    Google Scholar

    [SHI Xiaoying, ZHANG Chuanheng, JIANG Ganqing, et al. Microbial mats from the mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon-generation[J].Geoscience,2008, 22(5):669-682.]

    Google Scholar

    [10] 朱士兴. 原地微晶灰岩的成因、分类和形成环境[J]. 国外前寒武纪地质, 1996, 4:1-7.[ZHU Shixing. Genesis, classification, and formative environments of in situ micritic limestone[J]. Precambrian Geology Abroad, 1996

    Google Scholar

    , 4:1-7.]

    Google Scholar

    [11] Pratt B R. Calcification of cyanobacterial filaments:Girvanella and the origin of lower Paleozoic lime mud[J]. Geology, 2001, 29(9):763-766.

    Google Scholar

    [12] McKenzie J A, Vasconcelos C. Dolomite mountains and the origin of the dolomite rock of which they mainly consist:historical developments and new perspectives[J]. Sedimentolgy, 2009, 56:205-219.

    Google Scholar

    [13] Schopf J W. Earth's Earliest Biosphere:Its Origin and Evolution[M]. Princeton University Press, Princeton. 1983.

    Google Scholar

    [14] Brock T D, Madigan M T, Martinko J M. Biology of Microorganisms[M]. New Jersey:7th edn. Prentice Hall, 1994:1-80.

    Google Scholar

    [15] Nealson K H. Sediment bacteria:who's there, what they are doing, and what's new[J]. Ann. Rev. Earth Planet. Sci., 1997, 51:403-434.

    Google Scholar

    [16] Riding R, Awramik S M (Eds). Microbial Sediments[M]. Heidelberg:Springer-Verlag, 2000:39-50.

    Google Scholar

    [17] Konishi Y, Prince J, Knott B. The Fauna of Thrombolitic Microbiolites[M]. Lake Clifton, Western Australia. Hydrobiologia, 2001, 457(1-3):39-47.

    Google Scholar

    [18] 曹瑞骥,袁训来. 中国叠层石研究的历史和现状[J]. 微体古生物学报, 2003, 20(1):5-14.

    Google Scholar

    [CAO Ruiji, YUAN Xunlai. Brief history and current status of stromatolite study in China[J]. Acta Micropalaeontologica Sinica, 2003, 20(1):5-14.]

    Google Scholar

    [19] 严贤勤, 孟凡巍, 袁训来. 徐淮地区新元古代九顶山组燧石结核的地球化学特征[J]. 微体古生物学报, 2006, 23(3):295-302.

    Google Scholar

    [YAN Xianqin, MENG Fanwei, YUAN Xunlai. Geochemical characteristics of the cherts of the Neoproterozoic Jiudingshan Formation in northern Jiangsu and Anhui Provinces[J]. Acta Micropalaeontologica Sinica, 2006, 23(3):295-302.]

    Google Scholar

    [20] Riding R, Liang L Y. Geobiology of microbial carbonates:Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:101-115.

    Google Scholar

    [21] Woo J, Chough S K, Han Z Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China[J]. Palaios, 2008, 23:55-64.

    Google Scholar

    [22] Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo-Triassic faunal mass extinction[J]. Nature, 2005, 434:494-497.

    Google Scholar

    [23] Shapiro R S. A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15:166-169.

    Google Scholar

    [24] Kalkowsky E. Oolith and stromatolith im norddeutschen Buntsandstein[J]. Z.dt. Geol. Ges., 1908, 60:68-125.

    Google Scholar

    [25] Atiken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustration from Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Petrology, 1967, 37:1163-1178.

    Google Scholar

    [26] Awramik S M, Margulis L. Stromatolite[J]. Newsletter, 1974, 2:5.

    Google Scholar

    [27] Riding R. Calcareous Algae and Stromatolites[M]. Heidelberg:Springer-Verlag, 1991, 21-251.

    Google Scholar

    [28] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate siliclastic shelf basinal transect, Miocene, SE Spain[J]. Palaios, 1995, 10:347-361.

    Google Scholar

    [29] Embry A, Kloven J E. A late Devonian reef tract on northeastern Banks Island, Northwest Territories[J]. Bull. Can. Pet. Geol., 1971, 19:730-781.

    Google Scholar

    [30] Shen J W, Yu C M, Bao H M. A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37:195-210.

    Google Scholar

    [31] Shen J W, Webb G E, Jell J S. Platform margins, reef facies, and microbial carbonates:a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China[J]. Earth-Science Reviews, 2008, 88:33-59.

    Google Scholar

    [32] 李越, 傅启龙. 宁强广元地区志留系宁强组灰岩的微相研究[J]. 微体古生物学报, 1998, 15(3):294-306.

    Google Scholar

    [LI Yue, FU Qilong. The microfacies of the Ningqiang formation, telychian (Silurian) in the Ningqiang Guangyuan area[J]. Atca Micropalaeontologica Sinica, 1998, 15(3):294-306.]

    Google Scholar

    [33] Grabau A W. Principles of Straitigraphy[M]. New York:A.G. Seiler and Co, 1913, 269-300.

    Google Scholar

    [34] Folk R L. Practical petrographic classification of limestones[J]. AAPG Bulletin, 1959, 43(1):1-38.

    Google Scholar

    [35] Folk R L. Spectral subdivision of limestone types[J]. AAPG Bulletin, 1962, 1:33-61.

    Google Scholar

    [36] Dunham R J. Classification of carbonate rocks according to depositional texture[J]. AAPG Bulletin, 1962, 1:108-171.

    Google Scholar

    [37] Wright V P. A revised classification of limestones[J]. Sedimentary Geology, 1992, 76:177-186.

    Google Scholar

    [38] 段凯波, 段东生, 王洁,等.灰岩分类研究进展及其进一步完善[J]. 新疆石油地质, 2008, 29(5):657-661

    Google Scholar

    [DUAN Kaibo, DUAN Dongsheng, WANG Jie, et al. Study progress in limestone classification with perfection[J]. Xinjiang Petroleum Geology, 2008(a), 29(5):657-661.]

    Google Scholar

    [39] 温志峰, 钟建华, 李勇,等.叠层石成因和形成条件的研究综述[J]. 高校地质学报, 2004, 10(3):418-428.

    Google Scholar

    [WEN Zhifeng, ZHONG Jianhua, LI Yong, et al. Current study on genesis and formation conditions of stromatolites[J]. Geological Journal of China Universities, 2004, 10(3):418-428.]

    Google Scholar

    [40] 梅冥相, 孟庆芬, 刘智荣.微生物形成的原生沉积构造研究进展综述[J]. 古地理学报, 2007, 9(4):353-366.

    Google Scholar

    [MEI Mingxiang, MENG Qingfen, LIU Zhirong. Overview of advances in studies of primary sedimentary structures formed by microbes[J]. Journal of Palaeogeography, 2007, 9(4):353-366.]

    Google Scholar

    [41] Reid R P, Visscher P T, Decho A W, et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406:989-991.

    Google Scholar

    [42] Riding R. Phanerozoic Reefal Microbial Carbonate Abundance:Comparisons with Metazoan Diversity, Mass Extinction Events, and Seawater Saturation State[M]. Rev. Esp. Micropal, 2005,37, 23-39.

    Google Scholar

    [43] 高建平, 朱士兴.晋东北地区寒武系微生物岩及其与沉积环境的关系[J]. 微体古生物学报, 1998, 15(2):166-177.

    Google Scholar

    [GAO Jianping, ZHU Shixing. Cambrian microbiolites from eastern Shanxi Province and their relation to sedimentary environments[J]. Acta Micropalaeontologica Sinica, 1998, 15(2):166-177.]

    Google Scholar

    [44] 党皓文, 刘建波, 袁鑫鹏.湖北兴山中寒武统覃家庙群微生物岩及其古环境意义[J]. 北京大学学报:自然科学版, 2008, 2:40-49.[DANG Haowen, LIU Jianbo, YUAN Xinpeng. Microbialites in the middle Cambrian Qinjiamiao Group in Xingshan,Hubei Province:Implication for paleoenvironmental reconstruction[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008

    Google Scholar

    , 2:40-49.]

    Google Scholar

    [45] 段凯波, 段东生, 陈留勤,等.微生物碳酸盐岩研究进展及存在的问题[J]. 西北地质, 2008, 41(1):44-49.

    Google Scholar

    [DUAN Kaibo, DUAN Dongsheng, CHEN Liuqin, et al. Progress and problems in microbial carbonates research[J]. Northwestern Geology, 2008(b), 41(1):44-49.]

    Google Scholar

    [46] 何起祥.沉积地球科学的历史回顾与展望[J]. 沉积学报, 2003, 21(1):10-18.

    Google Scholar

    [HE Qixiang. Sedimentary earth sciences:yesterday, today and tomorrow[J]. Acta Sedimentologica Sinica, 2003, 21(1):10-18.]

    Google Scholar

    [47] 曹瑞冀, 袁训来. 叠层石[M]. 北京:中国科学技术大学出版社, 2006.[CAO Ruiji, YUAN Xunlai. Stromatolite[M]. Beijing:China University of Science and Technology Press, 2006.]

    Google Scholar

    [48] Garrett P. Phanerozoic stromatolites:noncompetitive ecologic restriction by grazing and burrowing animals[J]. Science, 1970, 169:171-173.

    Google Scholar

    [49] Awramik S M. Precambrian columnar stromatolite diversity:reflection of metazoan appearance[J]. Science, 1971, 174:825-827.

    Google Scholar

    [50] Baud A, Richoz S, Pruss S. The lower Triassic anachronistic carbonate facies in space and time[J]. Global and Planetary Change, 2007, 55:81-89.

    Google Scholar

    [51] 苏玲, 陈留勤.叠层石衰减事件及臼齿构造碳酸盐岩作用幕-了解前寒武纪碳酸盐岩世界的重要线索[J]. 地质科技情报, 2008, 27(6):17-23.

    Google Scholar

    [SU Ling, CHEN Liuqin. Stromatolite declines and molar-tooth carbonates:contributions to the understanding of the Precambrian carbonate world[J].Geological Science and Technology Information,2008, 27(6):17-23.]

    Google Scholar

    [52] Kennard J M,James N P. Thrombolites and stromatolites:Two distinct types of microbial structures[J]. Palaios, 1986, 1:492-503

    Google Scholar

    [53] Kah L C, Grotzinger J P. Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada[J]. Palaios, 1992, 7:305-315.

    Google Scholar

    [54] 赵震.核形石雏形——弥散粒:以天津蓟县雾迷山组为例[J]. 沉积学报, 1992, 10(2):19-27.

    Google Scholar

    [ZHAO Zhen. Dispersal grain:The embryonic form of oncolite[J]. Acta Sedimentologica Sinica, 1992, 10(2):19-27.]

    Google Scholar

    [55] McKenzie J A. The dolomite problem:an outstanding controversy[C]//Controversies in Modern Geology:Evolution of Geological Theories in Sedimentology (Eds D.W. Muller, J.A. McKenzie and H. Weissert). London:Academic Press, 1991:37-54.

    Google Scholar

    [56] 孙枢.中国沉积学的今后发展:若干思考与建议[J]. 地学前缘, 2005, 12(2):3-10.

    Google Scholar

    [SUN Shu. Sedimentology in China:perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2):3-10.]

    Google Scholar

    [57] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377:220-222.

    Google Scholar

    [58] Warthmann R, Van Lith Y.Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28:1091-1094.

    Google Scholar

    [59] Vasconcelos C, MeKenzie J A. Microbial mediation of modern dolomite precipitation and diagnesis under anoxic conditions (Lagoa Vermelha, Rio De Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67:378-390.

    Google Scholar

    [60] Burns S J, McKenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentolgy, 2000, 47:49-61.

    Google Scholar

    [61] Van Lith Y, Varthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments:a result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50:237-245.

    Google Scholar

    [62] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia:significance and implications[J]. Sedimentology, 2005, 52:987-1008.

    Google Scholar

    [63] Meister P, McKenzie J A, Vasconcelos C, et al. Dolomite formation in the dynamic deep biosphere:results from the Peru Margin[J]. Sedimentology, 2007, 54:1007-1031.

    Google Scholar

    [64] Wendt J, Belka Z, Kaufmann B, et al. The world's most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara)[J]. Journal of Sedimentary Research, 1997:424-436.

    Google Scholar

    [65] Kaufmann B. Diagenesis of Middle Devonian carbonate mounds of the Mader Basin (Eastern Anti-Atlas, Morocco)[J]. Journal of Sedimentary Research, 1997, 67:945-956.

    Google Scholar

    [66] Belka Z. Early Devonian Kess-Kess carbonate mud mounds of the eastern anti-atlas (Morocco), and their relation to submarine hydrothermal venting[J]. Journal of Sedimentary Research, 1998, 68:368-377.

    Google Scholar

    [67] Dorobek S L, Bachtel S L. Supply of allochthonous sediment and its effects on development of carbonate mud mounds, Mississippian Lake Valley Formation, Sacramento Mountains, South-Central New Mexico, U.S.A[J]. Journal of Sedimentary Research, 2001, 71:1003-1016.

    Google Scholar

    [68] Pfluger F. Matground structure and redox facies[J]. Palaios, 1999, 14:86-93.

    Google Scholar

    [69] Noffke N, Gerdes G, Klenke T, et al. Microbially induced sedimentary structures——A new category within the classification of primary sedimentary structure[J]. Joumal of Sedimentary Research, 2001, 71(5):649-656.

    Google Scholar

    [70] 梅冥相, 高金汉, 孟庆芬.从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J]. 现代地质, 2006, 20(3):413-422.

    Google Scholar

    [MEI Mingxiang, GAO Jinhan, MENG Qingfen. From matground structures to the primary sedimentary structures of a fifth category:significant concepts on sedimentology[J].Geoscience, 2006, 20(3):413-422.]

    Google Scholar

    [71] 邢裕盛, 高振家, 刘桂枝,等. 中国的上前寒武系[M]. 北京:地质出版社, 1989, 20-54.[XING Yusheng, GAO Zhenjia, LIU Guizhi,et al. The Upper Precambrian of China[M]. Beijing:Geological Publishing House, 1989:20

    Google Scholar

    -54.]

    Google Scholar

    [72] 宋天锐, 赵震, 王长尧,等. 华北元古宙沉积岩[M]. 北京:北京科学技术出版社, 1991, 90-101.[SONG Tianrui, ZHAO Zhen, WANG Changyao,et al. Proterozoic Sedimentary Rocks In North China[M]. Beijing:Science and Technology Press, 1991, 90

    Google Scholar

    -101.]

    Google Scholar

    [73] 杜汝霖. 前寒武纪古生物学与地史学[M]. 北京:地质出版社, 1992.[DU Rulin. Paleontology and Geochronology of the Precambrian[M]. Beijing:Geological Publishing House, 1992.]

    Google Scholar

    [74] 朱士兴, 邢裕盛, 张鹏远.华北地台中上元古界生物地层序列[M]. 北京:地质出版社, 1994, 1-36.[ZHU Shixing, XING Yusheng, ZHANG Pengyuan. Biostratigraphic succession of the Middle to Upper Proterozoic in the North China Platform[M]. Beijing:Geological Publishing House, 1994:1

    Google Scholar

    -36.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1653) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint