2009 Vol. 29, No. 3
Article Contents

ZHAO Meixun, LI Dawei, XING Lei. USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075
Citation: ZHAO Meixun, LI Dawei, XING Lei. USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075

USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY

  • TEX86 index is a relatively new paleo-sea surface temperature (SST) proxy, based on the ratio of a newly discovered group of biomarkers, glycerol dialkyl glycerol tetraethers(GDGTs),which are produced by marine archaea Crenarchaeota. Results based on laboratory culture and analyses of both particulate organic matter and surface sediments from the global oceans all indicate that SST is the main environmental control on the TEX86 index; while salinity, nutrient concentration and other factors have no obvious influences on it. However, terrestrial materials also contain low contents of GDGTs, so large errors can occur when the TEX86 index is applied to coastal and shallow marine environments. But simultaneous use of both the TEX86 index and another biomarker index BIT can ensure the accurate reconstruction of shallow water SST. In contrast to the commonly used U37K' index, the TEX86 index can be applied to warm water regions with SST higher than 29℃, and this index has been successfully applied to the reconstruction of warmer period SSTs in the past.Thus,the TEX86 has great potential for SST reconstructions of the western Pacific which includes the western Pacific Warm Pool and many marginal seas.
  • 加载中
  • [1] Imbrie J, Kipp N G.A new micropaleontological method quantitative paleoclimatology:application to a late Pleistocene Caribbean core[C]//The Late Cenozoic Ice Ages. New Haven and London:Yale University Press, 1971:71-181.

    Google Scholar

    [2] Mix A C, Bard E, Schneider R. Environmental processes of the Ice Age:land, oceans,glaciers (EPILOG)[J].Quaternary Science Reviews, 2001, 20:620-657.

    Google Scholar

    [3] Kucera M, Weineltb M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera:multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24:951-998.

    Google Scholar

    [4] Morey A E, Mix A C, Pisias N G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables[J]. Quaternary Science Reviews, 2005, 24:925-950.

    Google Scholar

    [5] Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera[J].Geochimica et Cosmochimica Acta, 1983, 47:1025-1031.

    Google Scholar

    [6] Yu K F, Zhao J X, Wei G J, et al. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula,northern South China Sea, and their applicability as paleoclimatic indicators[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218:57-73.

    Google Scholar

    [7] Nurnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.

    Google Scholar

    [8] Elderfield H, Ganssen G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785):442-445.

    Google Scholar

    [9] Lea D W,Pak D K,Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724.

    Google Scholar

    [10] Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135000 yr[J]. Quaternary Science Reviews, 2006,25(11-12):1152-1167.

    Google Scholar

    [11] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy-A new tool for climatic assessment[J]. Nature, 1986, 320:129-133.

    Google Scholar

    [12] Prahl F G, Wakeham S G.Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment[J]. Nature, 1987, 330:367-369.

    Google Scholar

    [13] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta,1998,62:1757-1772.

    Google Scholar

    [14] Herbert T D, Schuffert J D, Andreasen D, et al. Collapse of the California Current during glacial maxima linked to climate change on land[J]. Science, 2001, 293(5527):71-76.

    Google Scholar

    [15] Zhao M, Huang C Y, Wang C C, et al. A millennial-scale sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2):39-55.

    Google Scholar

    [16] Zhou H Y, Li T G, Jia G D, et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C-37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2-4):440-453.

    Google Scholar

    [17] Spero H J, Bijma J, Lea D W. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1999, 390:497-500.

    Google Scholar

    [18] Rosenthal Y,Lohmann G P.Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3):PA1044, doi:10.1029/2001PA000749.

    Google Scholar

    [19] Lea D W.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.

    Google Scholar

    [20] Herbert T D.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.

    Google Scholar

    [21] Pelejero C, Calvo E. The upper end of the temperature calibration revisited[J]. Geochemistry, Geophysics,Geosystems, 2003, 4(2):1014, doi:10.1029/2002GC000431.

    Google Scholar

    [22] McClymont E L, Rosell-Mele A. Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition[J]. Geology, 2005, 33(5):389-392.

    Google Scholar

    [23] Schneider R.Alkenone temperatures and carbon isotope records:Temporal resolution, offsets, and regionality[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1):1007, doi:10.1029/2000GC000060.

    Google Scholar

    [24] Sikes E L,Volkman J K.Calibration of alkenone unsaturation ratios for paleotemperature estimation in cold polar waters[J].Geochimica et Cosmochimica Acta,1993, 57:1883-1889.

    Google Scholar

    [25] Schouten S, Hopmans E C, Schefu E, et al. Distributional variations in Marine Crenarchaeotal membrane lipids:a new organic proxy for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.

    Google Scholar

    [26] Karner M, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.

    Google Scholar

    [27] Gliozzi A,Paoli G,DeRosa M,et al.Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaeabacteria[J]. Biochimica et Biophysica Acta, 1983, 735:234-242.

    Google Scholar

    [28] Uda I,Sugai A,Itoh Y H,et al.Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature[J]. Lipids, 2001, 36:103-105.

    Google Scholar

    [29] Wuchter C,Schouten S,Wakeham S G,et al.Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21:PA4208. doi:10.1029/2006PA001279.

    Google Scholar

    [30] Schouten S, Hopmans E C, Kuypers M M M, et al. Extreme high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids[J]. Geology, 2003, 31:1069-1072.

    Google Scholar

    [31] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224:107-116.

    Google Scholar

    [32] Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implication for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20:PA3013.

    Google Scholar

    [33] Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of Marine Crenarchaeota:Implications for TEX86 paleothermometry[J].Paleoceanography, 2004, 19:PA4028, doi:10.1029/2004PA001041.

    Google Scholar

    [34] Schouten S,Forster A,Panato E,et al.Towards the calibration of the TEX86 paleothermometer in ancient green house worlds[J]. Organic Geochemistry, 2007, 38:1537-1546.

    Google Scholar

    [35] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J].Geochimica et Cosmochimica Acta,2008,72:1154-1173.

    Google Scholar

    [36] Huguet C, Schimmelmann A, Thunell R, et al. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California[J]. Paleoceanography, 2007, 22:PA3203, doi:10.1029/2006PA001310.

    Google Scholar

    [37] Menzel D, Hopmans E C, Schouten S, et al. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239:1-15.

    Google Scholar

    [38] Herfort L, Schouten S, Boon J P, et al. Application of the TEX86 temperature proxy in the southern North Sea[J]. Organic Geochemistry, 2006, 37:1715-1726.

    Google Scholar

    [39] Huguet C, Kim J H, Sinninghe Damsté J S, et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37K')[J]. Paleoceanography, 2006, 21:PA3003, doi:10.1029/2005PA001215.

    Google Scholar

    [40] Murray A E, Preston C M, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica[J]. Applied and Environmental Microbiology, 1998, 64:2585-2595.

    Google Scholar

    [41] Murray A E, Wu K Y, Moyer C L, et al. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean[J]. Aquatic Microbial Ecology, 1999, 18:263-273.

    Google Scholar

    [42] Murray A E, Blakis A, Massana R, et al. A time series assessment of planktonic archaeal variability in the Santa Barbara Channel[J]. Aquatic Microbial Ecology, 1999, 20:129-145.

    Google Scholar

    [43] Turich C, Freeman K H, Bruns M A, et al. Lipids of marine Archaea:Patterns and provenance in the water-column and sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71:3272-3291.

    Google Scholar

    [44] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68:2997-3002.

    Google Scholar

    [45] Powers L A. Calibration and application of a new paleotemperature tool in lacustrine systems:TEX86 for continental paleoclimate reconstruction[D]. Ph. D. Thesis, University of Minnesota, 2005:92.

    Google Scholar

    [46] Schouten S, Hopmans E C, Sinninghe Damsté J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35:567-571.

    Google Scholar

    [47] Powers, L A,Werne J P,Johnson T C,et al. Crenarchaeotal membrane lipids in lake sediments:a new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7):613-616.

    Google Scholar

    [48] Schouten S, Hopmans EC, Pancost R D, Sinninghe Damsté J S. Wide spread occurrence of structurally diverse tetraether membrane lipids:evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14421-14426.

    Google Scholar

    [49] Weijers J W H,Schouten S,Spaargaren O C,et al.Occurrence and distribution of tetraether membrane lipids in soils:Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37:1680-1693.

    Google Scholar

    [50] Sluijs A,Schouten S,Pagani M,et al.Subtropical Artic Ocean temperatures during the Palaeocene-Eocene thermal maximum[J]. Nature, 2006, 441:610-613.

    Google Scholar

    [51] Weijers J W H, Schouten S, van den Linden M, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog[J]. FEMS Microbiological Letters, 2004, 239:51-56.

    Google Scholar

    [52] Herfort L, Schouten S, Boon J P, et al. Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index[J]. Limnology Oceanography, 2006, 51(5):2196-2205.

    Google Scholar

    [53] Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293:92-95.

    Google Scholar

    [54] Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J]. Nature, 1991, 353:225-229.

    Google Scholar

    [55] Tripati A,Elderfield H.Deep-sea temperature and circulation changes atthe Paleocene-Eocene thermal maximum[J]. Science, 2005, 308:1894-1898.

    Google Scholar

    [56] Bice K L, Birgel D, Meyers P A, et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations[J]. Paleoceanography, 2006, 21:PA2002, doi:10.1029/2005PA001203.

    Google Scholar

    [57] Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene:Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25:259-262.

    Google Scholar

    [58] Zachos J C, Wara M W, Bohaty S, et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum[J]. Science, 2003, 302:1551-1554.

    Google Scholar

    [59] Zachos J C, Schouten S, Bohaty S. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9):737-740.

    Google Scholar

    [60] Yan X H, Ho C R, Zheng Q, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258:1643-1645.

    Google Scholar

    [61] Meyers G,Douguy J R,Reed R K.Evaporative cooling of the western equatorial Pacific by anomalous winds[J]. Nature, 1986, 323:523-526.

    Google Scholar

    [62] Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32:427-476.

    Google Scholar

    [63] McClymont E L,Rosell-Mele A,Giraudeau J,et al.Alkenone and coccolith records of the mid-Pleistocene in the southeast Atlantic:Implications for the U37K' index and South African climate[J]. Quaternary Science Reviews, 2005, 24(14-15):1559-1572.

    Google Scholar

    [64] Wara M W,Ravelo A C,Delaney M L.Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309:758-761.

    Google Scholar

    [65] 汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录[J].科学通报,2003,48(21):2206-2215.

    Google Scholar

    [WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. The deep sea record in South China Sea since 30 Ma[J]. Chinese Science Bulletin, 2003, 48(21):2206-2215.]

    Google Scholar

    [66] Mercer J L,Zhao M X.Alkenone stratigraphy of the Northern South China Sea for the past 35 million years:Sites 1147 and 1148, ODP Leg 184[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 2004:1-17.

    Google Scholar

    [67] Jian Z M, Li B H, Huang B Q, et al. Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary:Evidences from the South China Sea and Okinawa Trough[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4):287-298.

    Google Scholar

    [68] Jian Z M, Huang B Q, Kuhnt W. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea[J]. Quaternary Research, 2001, 55:363-370.

    Google Scholar

    [69] Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4):378-393.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1673) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint