[1] |
Imbrie J, Kipp N G.A new micropaleontological method quantitative paleoclimatology:application to a late Pleistocene Caribbean core[C]//The Late Cenozoic Ice Ages. New Haven and London:Yale University Press, 1971:71-181.
Google Scholar
|
[2] |
Mix A C, Bard E, Schneider R. Environmental processes of the Ice Age:land, oceans,glaciers (EPILOG)[J].Quaternary Science Reviews, 2001, 20:620-657.
Google Scholar
|
[3] |
Kucera M, Weineltb M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera:multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24:951-998.
Google Scholar
|
[4] |
Morey A E, Mix A C, Pisias N G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables[J]. Quaternary Science Reviews, 2005, 24:925-950.
Google Scholar
|
[5] |
Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera[J].Geochimica et Cosmochimica Acta, 1983, 47:1025-1031.
Google Scholar
|
[6] |
Yu K F, Zhao J X, Wei G J, et al. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula,northern South China Sea, and their applicability as paleoclimatic indicators[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218:57-73.
Google Scholar
|
[7] |
Nurnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.
Google Scholar
|
[8] |
Elderfield H, Ganssen G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785):442-445.
Google Scholar
|
[9] |
Lea D W,Pak D K,Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724.
Google Scholar
|
[10] |
Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135000 yr[J]. Quaternary Science Reviews, 2006,25(11-12):1152-1167.
Google Scholar
|
[11] |
Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy-A new tool for climatic assessment[J]. Nature, 1986, 320:129-133.
Google Scholar
|
[12] |
Prahl F G, Wakeham S G.Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment[J]. Nature, 1987, 330:367-369.
Google Scholar
|
[13] |
Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta,1998,62:1757-1772.
Google Scholar
|
[14] |
Herbert T D, Schuffert J D, Andreasen D, et al. Collapse of the California Current during glacial maxima linked to climate change on land[J]. Science, 2001, 293(5527):71-76.
Google Scholar
|
[15] |
Zhao M, Huang C Y, Wang C C, et al. A millennial-scale sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2):39-55.
Google Scholar
|
[16] |
Zhou H Y, Li T G, Jia G D, et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C-37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2-4):440-453.
Google Scholar
|
[17] |
Spero H J, Bijma J, Lea D W. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1999, 390:497-500.
Google Scholar
|
[18] |
Rosenthal Y,Lohmann G P.Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3):PA1044, doi:10.1029/2001PA000749.
Google Scholar
|
[19] |
Lea D W.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.
Google Scholar
|
[20] |
Herbert T D.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.
Google Scholar
|
[21] |
Pelejero C, Calvo E. The upper end of the temperature calibration revisited[J]. Geochemistry, Geophysics,Geosystems, 2003, 4(2):1014, doi:10.1029/2002GC000431.
Google Scholar
|
[22] |
McClymont E L, Rosell-Mele A. Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition[J]. Geology, 2005, 33(5):389-392.
Google Scholar
|
[23] |
Schneider R.Alkenone temperatures and carbon isotope records:Temporal resolution, offsets, and regionality[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1):1007, doi:10.1029/2000GC000060.
Google Scholar
|
[24] |
Sikes E L,Volkman J K.Calibration of alkenone unsaturation ratios for paleotemperature estimation in cold polar waters[J].Geochimica et Cosmochimica Acta,1993, 57:1883-1889.
Google Scholar
|
[25] |
Schouten S, Hopmans E C, Schefu E, et al. Distributional variations in Marine Crenarchaeotal membrane lipids:a new organic proxy for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.
Google Scholar
|
[26] |
Karner M, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.
Google Scholar
|
[27] |
Gliozzi A,Paoli G,DeRosa M,et al.Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaeabacteria[J]. Biochimica et Biophysica Acta, 1983, 735:234-242.
Google Scholar
|
[28] |
Uda I,Sugai A,Itoh Y H,et al.Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature[J]. Lipids, 2001, 36:103-105.
Google Scholar
|
[29] |
Wuchter C,Schouten S,Wakeham S G,et al.Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21:PA4208. doi:10.1029/2006PA001279.
Google Scholar
|
[30] |
Schouten S, Hopmans E C, Kuypers M M M, et al. Extreme high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids[J]. Geology, 2003, 31:1069-1072.
Google Scholar
|
[31] |
Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224:107-116.
Google Scholar
|
[32] |
Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implication for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20:PA3013.
Google Scholar
|
[33] |
Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of Marine Crenarchaeota:Implications for TEX86 paleothermometry[J].Paleoceanography, 2004, 19:PA4028, doi:10.1029/2004PA001041.
Google Scholar
|
[34] |
Schouten S,Forster A,Panato E,et al.Towards the calibration of the TEX86 paleothermometer in ancient green house worlds[J]. Organic Geochemistry, 2007, 38:1537-1546.
Google Scholar
|
[35] |
Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J].Geochimica et Cosmochimica Acta,2008,72:1154-1173.
Google Scholar
|
[36] |
Huguet C, Schimmelmann A, Thunell R, et al. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California[J]. Paleoceanography, 2007, 22:PA3203, doi:10.1029/2006PA001310.
Google Scholar
|
[37] |
Menzel D, Hopmans E C, Schouten S, et al. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239:1-15.
Google Scholar
|
[38] |
Herfort L, Schouten S, Boon J P, et al. Application of the TEX86 temperature proxy in the southern North Sea[J]. Organic Geochemistry, 2006, 37:1715-1726.
Google Scholar
|
[39] |
Huguet C, Kim J H, Sinninghe Damsté J S, et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37K')[J]. Paleoceanography, 2006, 21:PA3003, doi:10.1029/2005PA001215.
Google Scholar
|
[40] |
Murray A E, Preston C M, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica[J]. Applied and Environmental Microbiology, 1998, 64:2585-2595.
Google Scholar
|
[41] |
Murray A E, Wu K Y, Moyer C L, et al. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean[J]. Aquatic Microbial Ecology, 1999, 18:263-273.
Google Scholar
|
[42] |
Murray A E, Blakis A, Massana R, et al. A time series assessment of planktonic archaeal variability in the Santa Barbara Channel[J]. Aquatic Microbial Ecology, 1999, 20:129-145.
Google Scholar
|
[43] |
Turich C, Freeman K H, Bruns M A, et al. Lipids of marine Archaea:Patterns and provenance in the water-column and sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71:3272-3291.
Google Scholar
|
[44] |
Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68:2997-3002.
Google Scholar
|
[45] |
Powers L A. Calibration and application of a new paleotemperature tool in lacustrine systems:TEX86 for continental paleoclimate reconstruction[D]. Ph. D. Thesis, University of Minnesota, 2005:92.
Google Scholar
|
[46] |
Schouten S, Hopmans E C, Sinninghe Damsté J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35:567-571.
Google Scholar
|
[47] |
Powers, L A,Werne J P,Johnson T C,et al. Crenarchaeotal membrane lipids in lake sediments:a new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7):613-616.
Google Scholar
|
[48] |
Schouten S, Hopmans EC, Pancost R D, Sinninghe Damsté J S. Wide spread occurrence of structurally diverse tetraether membrane lipids:evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14421-14426.
Google Scholar
|
[49] |
Weijers J W H,Schouten S,Spaargaren O C,et al.Occurrence and distribution of tetraether membrane lipids in soils:Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37:1680-1693.
Google Scholar
|
[50] |
Sluijs A,Schouten S,Pagani M,et al.Subtropical Artic Ocean temperatures during the Palaeocene-Eocene thermal maximum[J]. Nature, 2006, 441:610-613.
Google Scholar
|
[51] |
Weijers J W H, Schouten S, van den Linden M, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog[J]. FEMS Microbiological Letters, 2004, 239:51-56.
Google Scholar
|
[52] |
Herfort L, Schouten S, Boon J P, et al. Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index[J]. Limnology Oceanography, 2006, 51(5):2196-2205.
Google Scholar
|
[53] |
Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293:92-95.
Google Scholar
|
[54] |
Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J]. Nature, 1991, 353:225-229.
Google Scholar
|
[55] |
Tripati A,Elderfield H.Deep-sea temperature and circulation changes atthe Paleocene-Eocene thermal maximum[J]. Science, 2005, 308:1894-1898.
Google Scholar
|
[56] |
Bice K L, Birgel D, Meyers P A, et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations[J]. Paleoceanography, 2006, 21:PA2002, doi:10.1029/2005PA001203.
Google Scholar
|
[57] |
Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene:Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25:259-262.
Google Scholar
|
[58] |
Zachos J C, Wara M W, Bohaty S, et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum[J]. Science, 2003, 302:1551-1554.
Google Scholar
|
[59] |
Zachos J C, Schouten S, Bohaty S. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9):737-740.
Google Scholar
|
[60] |
Yan X H, Ho C R, Zheng Q, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258:1643-1645.
Google Scholar
|
[61] |
Meyers G,Douguy J R,Reed R K.Evaporative cooling of the western equatorial Pacific by anomalous winds[J]. Nature, 1986, 323:523-526.
Google Scholar
|
[62] |
Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32:427-476.
Google Scholar
|
[63] |
McClymont E L,Rosell-Mele A,Giraudeau J,et al.Alkenone and coccolith records of the mid-Pleistocene in the southeast Atlantic:Implications for the U37K' index and South African climate[J]. Quaternary Science Reviews, 2005, 24(14-15):1559-1572.
Google Scholar
|
[64] |
Wara M W,Ravelo A C,Delaney M L.Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309:758-761.
Google Scholar
|
[65] |
汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录[J].科学通报,2003,48(21):2206-2215.
Google Scholar
[WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. The deep sea record in South China Sea since 30 Ma[J]. Chinese Science Bulletin, 2003, 48(21):2206-2215.]
Google Scholar
|
[66] |
Mercer J L,Zhao M X.Alkenone stratigraphy of the Northern South China Sea for the past 35 million years:Sites 1147 and 1148, ODP Leg 184[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 2004:1-17.
Google Scholar
|
[67] |
Jian Z M, Li B H, Huang B Q, et al. Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary:Evidences from the South China Sea and Okinawa Trough[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4):287-298.
Google Scholar
|
[68] |
Jian Z M, Huang B Q, Kuhnt W. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea[J]. Quaternary Research, 2001, 55:363-370.
Google Scholar
|
[69] |
Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4):378-393.
Google Scholar
|