2025 Vol. 8, No. 2
Article Contents

Ji-shun Ren, Jian-hui Liu, Jun-bin Zhu, 2025. Mesozoic superposed orogenic systems in eastern China, China Geology, 8, 241-252. doi: 10.31035/cg20250015
Citation: Ji-shun Ren, Jian-hui Liu, Jun-bin Zhu, 2025. Mesozoic superposed orogenic systems in eastern China, China Geology, 8, 241-252. doi: 10.31035/cg20250015

Mesozoic superposed orogenic systems in eastern China

More Information
  • The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China. The resulted tectonic belts are neither products of the third stage of crustal evolution, as proposed by Chen Guoda, nor intra-continental (or intraplate) orogenic belts generated by intraplate dynamics, as argued by some scholars—rather, they are superposed orogenic belts formed on the pre-existing continental crust in eastern China due to Mesozoic Paleo-Pacific dynamic system. In the past, these orogenic belts were called the marginal Pacific epicontinental activation belts of eastern China. In the Mesozoic, under the effect of Paleo-Pacific dynamic system, the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin (Russia)–Japan-Ryukyu-Taiwan (China)-Palawan (Philippines) regions, while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin. The two orogenic systems, both driven by Mesozoic Paleo-Pacific dynamic system, developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia, radically changing the pre-Indosian tectonic framework of the area.

  • 加载中
  • Argand E. 1924. Tectonics of Asia. Translated and edited by CAROZZI A V. New York: Hafner Press, 1924; Division of Macmillan Publishing Co., Inc., 1977: 218.

    Google Scholar

    Cao YW, Zhou XW, Liu JH. 2022. Discovery of High pressure granulite in the Daqu island, east China sea and its tectonic implications. Journal of Jilin University (Earth science edition), 53(2), 475–490 (in Chinese with English abstract). doi: 10.13278/j.cnki.jjuese.20210343.

    CrossRef Google Scholar

    Charvet J. 2013. Late Paleozoic–Mesozoic tectonic evolution of SW Japan: A review–reappraisal of the accretionary orogeny and revalidation of the collisional model. Journal of Asian Earth Sciences, 72, 88–101. doi: 10.1016/j.jseaes.2012.04.023.

    CrossRef Google Scholar

    Charvet J, Faure M. 1984. Mesozoic orogeny, microblocks and longitudinal left lateral motions in SW Japan. Annales de la Société Géologique du Nord CIII, 103, 361–375.

    Google Scholar

    Charvet J, Faure M, Caridroit M, Guidi A. 1985. Some tectonic and tectogenetic aspects of SW Japan: an alpine-type orogen in an island-arc position. NASU N., KOBAYASHI K., UYEDA S., Formation of the active ocean margins. Tokyo: Terrapub, 791–817. doi: 10.1007/978-94-009-4720-7_35.

    Google Scholar

    Chen GD. 1956. Examples of “activizing region” in the Chinese platform with special reference to the “Cathaysia” problem. Acta Geologica Sinica, 36(3), 239–271 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.1956.03.001.

    CrossRef Google Scholar

    Chen GD. 1959. Theory of progression with transformation between active and “stable” regions of the earth crust—A new recognition on the regularity of the earth crust`s development. Acta Geological Sinica, 39(3), 279–292 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.1959.03.003.

    CrossRef Google Scholar

    Chen YC, Chang YF, Pei RF. 2007. Chinese mineralization system and assessment of regional mineralization. Beijing: Geological Publishing House, 1–962 (In Chinese).

    Google Scholar

    Cheng YQ. 1994. Introduction to regional geology in China. Beijing: Geological Publishing House, 1–517 (in Chinese).

    Google Scholar

    Cho DL, Takahashi Y, Kim SW, Yi K, Lee BC. 2021. Zircon U-Pb-Hf and geochemical analyses of paragneiss and granitic gneiss from Oki-Dogo Island, Southwest Japan, and its tectonic implications. Lithos, 396–397, 106217. https://doi.org/10.1016/j.lithos.2021.106217.

    Google Scholar

    Dong YP, Liu XM, Neubauer F, Zhang GW, Tao N, Zhang YG, Zhang XN, Li W. 2013. Timing of Paleozoic amalgamation between the North China and South China blocks: Evidence from detrital zircon U–Pb ages. Tectonophysics, 586, 173–191. doi: 10.1016/j.tecto.2012.11.018.

    CrossRef Google Scholar

    Fantaine H. 1979. Note on the Geology of the Calamian Islands, North Palawan, Philippines. ESCAP-CCOP Newsletter, 6(2), 3–30.

    Google Scholar

    Faure M, Monié P, Fabbri O. 1988. Microtectonics and 39Ar-40Ar dating of high pressure metamorphic rocks of the south Ryukyu Arc and their bearings on the pre-Eocene geodynamic evolution of eastern Asia. Tectonophysics, 156(1-2), 133–143. doi: 10.1016/0040-1951(88)90287-9.

    CrossRef Google Scholar

    Feng R. 1985. Crustal thickness and densities in the upper mantle beneath China—the results of three dimensional gravity inversion. Acta Seismologica Sinica, 7(2), 143–157 (in Chinese with English abstract).

    Google Scholar

    Guo WK. 1987. 1∶4000000 metallogenetic map of endogenic ore deposits of China. Beijing: Geological Publishing House, 72 (in Chinese).

    Google Scholar

    Huang TK. 1945. On major tectonic forms of China. Geological Memoirs, 20, 165. doi: 10.1017/S0016756800082236.

    CrossRef Google Scholar

    Huang TK, Xu KQ. 1937. The Mesozoic orogeny in Pingxiang Coalfield, Jiangxi Province. Journal of the Chinese Geological Society, 16, 177–193 (in Chinese).

    Google Scholar

    Ichikawa K, Mizutani S, Hara I, Hada S, Yao A. 1990. Pre-Cretaceous terranes of Japan. Pre-Jurassic evolution of eastern Asia. Osaka: IGCP, 1–413.

    Google Scholar

    Isozaki Y. 2019. A visage of early Paleozoic Japan: geotectonic and paleobiogeographical significance of Greater South China. Island Arc, 28(3), e12296. doi: 10.1111/iar.12296.

    CrossRef Google Scholar

    Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18(1), 82–105. doi: 10.1016/j.gr.2010.02.015.

    CrossRef Google Scholar

    Jahn BM. 2010. Accretionary orogen and evolution of the Japanese Islands: Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. American Journal of Science, 310(10), 1210–1249. doi: 10.2475/10.2010.02.

    CrossRef Google Scholar

    Jiang Y, Xing GF, Yuan Q, Zhao XL, Duan Z, Dong XF. 2016. The first discovery of Permian metamorphic rocks in Zhoushan Islands, Zhejiang Province. Geological Bulletin of China, 35(7), 1046–1055 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.07.002.

    CrossRef Google Scholar

    Kimura K, Hayasaka Y, Yamashita J, Shibata T, Kawaguchi K, Fujiwara H, Das K. 2021. Antiquity and tectonic lineage of Japanese Islands: New discovery of Archean–Paleoproterozoic complex. Earth and Planetary Science Letters, 565, 116926. doi: 10.1016/j.jpgl.2021.116926.

    CrossRef Google Scholar

    Knittel U, Hung CH, Yang TF, Iizuka Y. 2010. Permian arc magmatism in Mindoro, the Philippines: An early indosinian event in the Palawan continental terrane. Tectonophysics, 493(1–2), 113–117. doi: 10.1016/j.tecto.2010.07.007.

    CrossRef Google Scholar

    Li YY, Li J, Zhu S. 1935. Geology of Ningzhen Mountain. Collected Journal of the Institute of Geology, pre-National Academia Sinica, 11, 1–387 (in Chinese)

    Google Scholar

    Lee YY, Chu S. 1934. Geology of Kenkou on the Hunan-Kwangtung border and its bearing to the orogeny of the Nanling ranges. Bulletin of the Geological Society of China, 13, 183–194. doi: 10.1111/J.1755-6724.1934.TB00003.X.

    CrossRef Google Scholar

    Liu BJ, Xu XS, Pan XN, Huang HQ, Xu Q. 1993. The evolution and mineralization of sedimentary crust in the ancient continent of southern China. Beijing: Science Press, 1–236.

    Google Scholar

    Liu HY. 1955. Paleogeographic map of China. Beijing: China Science Publishing, 1–43 (in Chinese).

    Google Scholar

    Lu FX, Zheng JP, Li WP, Chen MH, Cheng ZM. 2000. The main evolution pattern of Phanerozoic mantle in the eastern China: The “mushroom cloud” model. Earth Science Frontiers, 7(1), 97–107 (in Chinese with English abstract).

    Google Scholar

    Petrov O, Pubellier M. 2018. Tectonic map of the Arctic (1: 10000000). St. Petersburg: Vsegei Printing House.

    Google Scholar

    Petrov OV, Leonov YG, Pospelov II. 2014. Tectonics of Northern, Central and eastern Asia: explanatory note to the Tectonic Map of Northern-Central-eastern Asia and Adjacent Areas at Scale 1: 250000. St. Petershurg: Vsegei Printing House.

    Google Scholar

    Ren JS, Chen TY, Niu BG, Liu ZG, Liu FR. 1990. Tectonic evolution of the continental lithosphere and metallogeny in eastern China and Adjacent areas. Beijing: Science Press, 1–205 (In Chinese).

    Google Scholar

    Ren JS. 1964. Preliminary discussion on several pre-Devonian geotectonic issues in southeastern China. Acta Geologica Sinica, 44(4), 418–439 (in Chinese with Russian abstract). doi: 10.19762/j.cnki.dizhixuebao.1964.04.004.

    CrossRef Google Scholar

    Ren JS, Jiang CF, Zhang ZK, Qin DY. 1980. Geotectonic evolution of China. Beijing: Science Press, 1–124 (In Chinese).

    Google Scholar

    Ren JS, Niu BG, Liu ZG. 1999a. Soft collision, superposition orogeny and polycyclic suturing. Earth Science Frontiers, 6(3), 85–93 (in Chinese with English abstract).

    Google Scholar

    Ren JS, Niu BG, Wang J, Jin XC, Zhao L, Liu RY. 2013a. Advances in research of Asian geology—a summary of 1: 5M International Geological Map of Asia project. Journal of Asian Earth Sciences, 72, 3–11. doi: 10.1016/j.jseaes.2013.02.006.

    CrossRef Google Scholar

    Ren JS, Niu BG, Wang J, Jin XC, Xie LZ. 2013b. 1: 5M International geological map of Asia. Beijing: Geological Publishing House.

    Google Scholar

    Ren JS, Wang ZX, Chen BW, Jiang CF, Niu BG, Li JY, Xie GL, He ZJ, Liu ZG. 1999b. The tectonics of China from a global view–A guide to the tectonic map of China and adjacent regions. Beijing: Geological Publishing House, 1–50.

    Google Scholar

    Ren JS, Xu QQ, Zhao L, Zhu JB. 2015. Looking for submerged landmasses. Geological Review, 61(5), 969–989 (in Chinese with English abstract). doi: 10.16509/j.georeview.2015.05.001.

    CrossRef Google Scholar

    Ren JS, Xu QQ, Zhao L, Zhu JB. 2017. From geosyncline-platform theory, plate tectonics to the multisphere tectonic view of earth system. Geological Review, 63(5), 1133–1140 (in Chinese with English abstract). doi: 10.16509/j.georeview.2017.05.001.

    CrossRef Google Scholar

    Ren JS, Zhang ZK, Niu BG. 1991. Study on the process of assembling the Qinling Orogenic Belt and the Yangtze Block in the Yangtze Region. Ye LJ, Qian XL, Zhang GW. Selected Papers on the Academic Symposium of Qinling Mountains Orogenic Belt. Xi’an: Northwestern University Press, 99–110 (in Chinese).

    Google Scholar

    Ren JS, Zhao L, Xu QQ, Zhu JB. 2016. Global tectonic position and geodynamic system of China. Acta Geologica Sinica, 90(9), 2100–2108 (in Chinese with English abstract).

    Google Scholar

    Ren JS, Zhu JB, Li C, Liu RY. 2019. Is the Qinling Orogen an Indosinian Collisional Orogenic Belt? Earth Science, 44(5), 1476–1486 (in Chinese with English abstract).

    Google Scholar

    Ren JS. 1996. The continental tectonics of China. Journal of Southeast Asian Earth Sciences, 13(3-5), 197–204. doi: 10.1016/0743-9547(96)00026-8.

    CrossRef Google Scholar

    Shao WY, Chung SL, Chen WS, Lee HY, Xie LW. 2015. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479–482. doi: 10.1130/G36499.1.

    CrossRef Google Scholar

    Sokolov SD, Bondarenko GY, Khudoley AK, Morozov OL, Luchitskaya MV, Tuchkova MI, Layer PW. 2009. Tectonic reconstruction of Uda-Murgal arc and the Late Jurassic and Early Cretaceous convergent margin of Northeast Asia–Northwest Pacific. Stephan Mueller Special Publication Series, 4, 273–288. doi: 10.5194/smsps-4-273-2009.

    CrossRef Google Scholar

    Wang HZ. 1985. Atlas of Palaeogeography of China. Beijing: Cartographic Publishing House.

    Google Scholar

    Wilde SA, Zhou XH, Nemchin AA, Sun M. 2003. Mesozoic crust-mantle interaction beneath the North China Craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31(9), 817. doi: 10.1130/g19489.1.

    CrossRef Google Scholar

    Wong WH. 1927. Crustal movements and igneous activities in eastern China since Mesozoic Time. Bulletin of the Geological Society of China, 6(1), 9–37. doi: 10.1111/j.1755-6724.1927.mp6001002.x.

    CrossRef Google Scholar

    Wong WH. 1929. The Mesozoic orogenic movement in eastern China. Bulletin of the Geological Society of China, 8(1), 33–44. doi: 10.1111/j.1755-6724.1929.mp8001004.x.

    CrossRef Google Scholar

    Yui TF, Chu HT, Suga K, Lan CY, Chung SH, Wang KL, Grove M. 2017. Subduction-related 200 Ma Talun metagranite, SW Taiwan: An age constraint for Palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. International Geology Review, 59(3), 333–346. doi: 10.1080/00206814.2016.1261259.

    CrossRef Google Scholar

    Yui TF, Okamoto K, Usuki T, Lan CY, Chu HT, Liou JG. 2009. Late Triassic Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China: Evidence from zircon SHRIMP dating. International Geology Review, 51(4), 304–328. doi: 10.1080/00206810802636369.

    CrossRef Google Scholar

    Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y. 2009. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os-Sr-Nd isotopic constrains. Journal of the Geological Society, 166(2), 249–259. doi: 10.1144/0016-76492007-152.

    CrossRef Google Scholar

    Zheng HR, Hu ZQ. 2010. The Atlas of pre-Mesozoic tectonic-lithofacies paleogeography of China. Beijing: Geological Publishing House, 1–194 (in Chinese).

    Google Scholar

    Zhou XH. 2006. Major transformation of subcontinental lithosphere beneath eastern China in the Cenozoic-Mesozoic: Review and prospect. Earth Science Frontiers, 13(2), 50–64 (in Chinese with English abstract).

    Google Scholar

    Zhou XH. 2009. Major transformation of subcontinental lithosphere beneath North China in Cenozoic-Mesozoic: Revisited. Geological Journal of China Universities, 15(1), 1–18 (in Chinese with English abstract).

    Google Scholar

    Zhu JB, Ren JS. 2017. Carboniferous-Permian stratigraphy and sedimentary environment of southeastern Inner Mongolia, China: Constraints on final closure of the paleo-Asian ocean. Acta Geologica Sinica - English Edition, 91(3), 832–856. doi: 10.1111/1755-6724.13313.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(22) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint