2024 Vol. 7, No. 2
Article Contents

Chang-dong Li, Peng-fei Feng, Xi-hui Jiang, Shuang Zhang, Jie Meng, Bing-chen Li, 2024. Extensive identification of landslide boundaries using remote sensing images and deep learning method, China Geology, 7, 276-289. doi: 10.31035/cg2023148
Citation: Chang-dong Li, Peng-fei Feng, Xi-hui Jiang, Shuang Zhang, Jie Meng, Bing-chen Li, 2024. Extensive identification of landslide boundaries using remote sensing images and deep learning method, China Geology, 7, 276-289. doi: 10.31035/cg2023148

Extensive identification of landslide boundaries using remote sensing images and deep learning method

More Information
  • The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue. It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response. Therefore, the Skip Connection DeepLab neural network (SCDnn), a deep learning model based on 770 optical remote sensing images of landslide, is proposed to improve the accuracy of landslide boundary detection. The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features. SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block (ASPC) with a coding structure that reduces model complexity. The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8 and 0.9; while 52 images with MIoU values exceeding 0.9, which exceeds the identification accuracy of existing techniques. This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future investigations and applications in related domains.

  • 加载中
  • Badrinarayanan V, Kendall A, Cipolla R. 2015. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv. Preprint arXiv: 1511.0051, 2015. doi: 10.48550/arXiv.1511.00561.

    Google Scholar

    Bragagnolo L, Rezende LR, Silva RV, Grzybowski JMV. 2021. Convolutional neural networks applied to semantic segmentation of landslide scars. CATENA, 201, 105189. doi: 10.1016/j.catena.2021.105189.

    CrossRef Google Scholar

    Cao WG, Fu Y, Dong QY, Wang HG, Ren Y, Li ZY, Du YY. 2023. Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning. China Geology, 6(3), 409–419. doi: 10.31035/cg2023013.

    CrossRef Google Scholar

    Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2017. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834–848. doi: 10.1109/TPAMI.2017.2699184.

    CrossRef Google Scholar

    Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European conference on computer vision (ECCV), 833‒851. doi: 10.48550/arXiv.1802.02611.

    Google Scholar

    Czikhardt R, Papco J, Bakon M, Liscak P, Ondrejka P, Zlocha M. 2017. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences, 7(3), 87. doi: 10.3390/geosciences7030087.

    CrossRef Google Scholar

    Dahal RK , Hasegawa S , Nonomura A. 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102 (3‒4), 496‒510. doi: 10.1016/j.geomorph.2008.05.041.

    Google Scholar

    Dai C, Li WL, Wang D, Lu HY, Xu Q, Jian J. 2021. Active landslide detection based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5), 1092–1103. doi: 10.1007/s12583-020-1380-0.

    CrossRef Google Scholar

    Ding A, Zhang Q, Zhou X, Dai B. 2016. Automatic recognition of landslide based on CNN and texture change detection. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 444–448. doi: 10.1109/YAC.2016.7804935.

    CrossRef Google Scholar

    Duchi J, Hazan E, Singer Y. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(7), 2121–2159. doi: 10.1109/TNN.2011.2146788.

    CrossRef Google Scholar

    Feng PF, Li CD, Zhang S, Meng J, Long JJ. 2024. Integrating shipborne images with multichannel deep learning for landslide detection. Journal of Earth Science, 35(1), 296–300. doi: 10.1007/s12583-023-1957-5.

    CrossRef Google Scholar

    Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196. doi: 10.3390/rs11020196.

    CrossRef Google Scholar

    He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770‒778. doi: 10.1109/CVPR.2016.90.

    Google Scholar

    Ji S, Yu D, Shen C, Li W, Xu Q. 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides, 17(6), 1337–1352. doi: 10.1007/s10346-020-01353-2.

    CrossRef Google Scholar

    Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. doi: 10.1145/3065386.

    CrossRef Google Scholar

    Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980. doi: 10.48550/arXiv.1412.6980.

    Google Scholar

    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553), 436–444. doi: 10.1038/nature14539.

    CrossRef Google Scholar

    Li C, Criss RE, Fu Z, Long J, Tan Q. 2021. Evolution characteristics and displacement forecasting model of landslides with stair-step sliding surface along the Xiangxi River, three Gorges Reservoir region, China. Engineering Geology, 283, 105961–105975. doi: 10.1016/j.enggeo.2020.105961.

    CrossRef Google Scholar

    Li Y, Ma J, Zhang Y. 2021. Image retrieval from remote sensing big data: A survey. Information Fusion, 67, 94–115. doi: 10.1016/j.inffus.2020.10.008.

    CrossRef Google Scholar

    Li Y, Wang P, Feng Q, Ji X, Jin D, Gong J. 2023. Landslide detection based on shipborne images and deep learning models: A case study in the Three Gorges Reservoir Area in China. Landslides, 20(3), 547–558. doi: 10.1007/s10346-022-01997-2.

    CrossRef Google Scholar

    Liu P, Wei Y, Wang Q, Xie J, Chen Y, Li Z, Zhou H. 2021. A Research on Landslides Automatic Extraction Model Based on the Improved Mask R-CNN. ISPRS International Journal of Geo-Information, 10(3), 168. doi: 10.3390/ijgi1003016.

    CrossRef Google Scholar

    Liu Y, Wu L. 2016. Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning. Procedia Computer Science, 91, 566–575. doi: 10.1016/j.procs.2016.07.144.

    CrossRef Google Scholar

    Long Y, Xia GS, Li S, Yang W, Yang MY, Zhu XX, Li D. 2021. On creating benchmark dataset for aerial image interpretation: Reviews, guidances, and million-aid. IEEE Journal of selected topics in applied earth observations and remote sensing, 14, 4205–4230. doi: 10.1109/JSTARS.2021.3070368.

    CrossRef Google Scholar

    Lü ZY, Shi W, Zhang X, Benediktsson JA. 2018. Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1520–1532. doi: 10.1109/JSTARS.2018.2803784.

    CrossRef Google Scholar

    Meng J, Li CD, Zhou JQ, Zhang ZH, Yan SY, Zhang YH, Huang DW, Wang GH. 2023. Multiscale evolution mechanism of sandstone under wet-dry cycles of deionized water: from molecular scale to macroscopic scale. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1171–85. doi: 10.1016/j.jrmge.2022.10.008.

    CrossRef Google Scholar

    Mohan A, Singh AK, Kumar B, Dwivedi R. 2021. Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998. doi: 10.1002/ett.3998.

    CrossRef Google Scholar

    Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F. 2011. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote sensing of environment, 115(7), 1743–1757. doi: 10.1016/j.rse.2011.03.006.

    CrossRef Google Scholar

    Qi T, Zhao Y, Meng X, Chen G, Dijkstra T. 2021. AI-Based susceptibility analysis of shallow landslides induced by heavy rainfall in Tianshui, China. Remote Sensing, 13(9), 1819. doi: 10.3390/rs13091819.

    CrossRef Google Scholar

    Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, 234–241. doi: 10.48550/arXiv.1505.04597.

    CrossRef Google Scholar

    Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4510‒4520. doi: 10.48550/arXiv.1801.04381.

    Google Scholar

    Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556. doi: 10.48550/arXiv.1409.1556.

    Google Scholar

    Solari L, Del SM, Raspini F, Barra A, Bianchini S, Confuorto P, Casagli N, Crosetto M. 2020. Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sensing, 12(8), 1351. doi: 10.3390/rs12081351.

    CrossRef Google Scholar

    Sun Q, Zhang L, Ding XL, Hu J, Li ZW, Zhu JJ. 2015. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of Environment, 156, 45–57. doi: 10.1016/j.rse.2014.09.029.

    CrossRef Google Scholar

    Tieleman T, Hinton G. 2012. Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26‒31.

    Google Scholar

    Wang H, Zhang L, Yin K, Luo H, Li J. 2021. Landslide identification using machine learning. Geoscience Frontiers, 12(1), 351–364. doi: 10.1016/j.gsf.2020.02.012.

    CrossRef Google Scholar

    Wei FQ, Sergey C, Konstantin A, Dmitry P, Olga T, Su PC, Jiang YH, Xu A, Alexey P. 2010. A seismically triggered landslide in the Niujuan Valley near the epicenter of the 2008 Wenchuan Earthquake. Journal of Earth Science, 21(6), 901–909. doi: 10.1007/s12583-010-0143-8.

    CrossRef Google Scholar

    Xu C, Li C, Cui Z, Zhang T, Yang J. 2020. Hierarchical semantic propagation for object detection in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 4353–4364. doi: 10.1109/TGRS.2019.2963243.

    CrossRef Google Scholar

    Zhang TL, Zhou AG, Sun Q, Wang HS, Wu JB, Liu ZH. 2020. Hydrological response characteristics of landslides under typhoon-triggered rainstorm conditions. China Geology, 3(3), 455–461. doi: 10.31035/cg2020028.

    CrossRef Google Scholar

    Zhang X, Yu W, Pun MO, Shi W. 2023. Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning. ISPRS Journal of Photogrammetry and Remote Sensing, 197, 1–17. doi: 10.1016/j.isprsjprs.2023.01.018.

    CrossRef Google Scholar

    Zhao C, Lu Z. 2018. Remote Sensing of Landslides—A Review. Remote Sensing, 10(2), 279. doi: 10.3390/rs10020279.

    CrossRef Google Scholar

    Zhong C, Li H, Xiang W, Su AJ, Huang XF. 2012. Comprehensive study of landslides through the integration of multi remote sensing techniques: Framework and latest advances. Journal of Earth Science, 23(2), 243–252. doi: 10.1007/s12583-012-0245-6.

    CrossRef Google Scholar

    Zhou PC, Cheng G, Yao XW, Han JW. 2021. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin, 25(1), 182–197. doi: 10.11834/jrs.20210164.

    CrossRef Google Scholar

    Zhu XX, Tuia D, Mou L, Xia GS, Zhang L, Xu F, Fraundorfer F. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. doi: 10.1109/MGRS.2017.2762307.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(448) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint