Citation: | Wei Wang, Yuan-dong Huang, Chong Xu, Xiao-yi Shao, Lei Li, Li-ye Feng, Hui-ran Gao, Yu-long Cui, Shuai Wu, Zhi-qiang Yang, Kai Ma, 2024. Identification and distribution of 13003 recognizable landslides in the northwest margin of the Qinghai-Tibet Plateau, China Geology, 7, 171-187. doi: 10.31035/cg2023140 |
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides. However, the northwestern margin of this region, characterised by limited human activities and challenging transportation, remains insufficiently explored concerning landslide occurrence and dispersion. With the planning and construction of the Xinjiang-Tibet Railway, a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies. By using the human-computer interaction interpretation approach, the authors established a landslide database encompassing 13003 landslides, collectively spanning an area of 3351.24 km2 (36°N-40°N, 73°E-78°E). The database incorporates diverse topographical and environmental parameters, including regional elevation, slope angle, slope aspect, distance to faults, distance to roads, distance to rivers, annual precipitation, and stratum. The statistical characteristics of number and area of landslides, landslide number density (LND), and landslide area percentage (LAP) are analyzed. The authors found that a predominant concentration of landslide origins within high slope angle regions, with the highest incidence observed in intervals characterised by average slopes of 20° to 30°, maximum slope angle above 80°, along with orientations towards the north (N), northeast (NE), and southwest (SW). Additionally, elevations above 4.5 km, distance to rivers below 1 km, rainfall between 20‒30 mm and 30‒40 mm emerge as particularly susceptible to landslide development. The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops. Both fault and human engineering activities have different degrees of influence on landslide development. Furthermore, the significance of the landslide database, the relationship between landslide distribution and environmental factors, and the geometric and morphological characteristics of landslides are discussed. The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64. It means the landslides mobility in the region is relatively low, and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
Borgatti L, Soldati M. 2010. Landslides as a geomorphological proxy for climate change: A record from the Dolomites (northern Italy). Geomorphology, 120(1–2), 56–64. doi: 10.1016/j.geomorph.2009.09.015. |
Brunel M, Arnaud N, Tapponnier P, Pan Y, Wang Y. 1994. Kongur Shan normal fault: type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 22(8), 707–710. doi: 10.1130/0091-7613(1994)022<0707:ksnfte>2.3.co;2. |
Bui DT, Pradhan B, Lofman O, Revhaug I. 2012. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naïve bayes models. Mathematical Problems in Engineering, 2012, 1–26. doi: 10.1155/2012/974638. |
Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu AX, Pei X, Duan Z. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren county, Jiangxi Province, China. Science of The Total Environment, 626, 1121–1135. doi: 10.1016/j.scitotenv.2018.01.124. |
Chen Y, He X, Xu C, Huang Y, Zhang P, Luo Z, Zhan T. 2022. Development characteristics and causes of a fatal landslide occurred in Shuicheng, Guizhou Province, China. ISPRS International Journal of Geo-Information, 11(2), 119. doi: 10.3390/ijgi11020119. |
Chen Z, Huang Y, He X, Shao X, Li L, Xu C, Wang S, Xu X, Xiao Z. 2023. Landslides triggered by the 10 June 2022 Maerkang Earthquake Swarm, Sichuan, China: Spatial distribution and tectonic significance. Landslides. doi: 10.1007/s10346-023-02080-0. |
Chevalier ML. 2019. Active tectonics along the Karakorum Fault, western Tibetan Plateau: A review. Acta Geoscientica Sinica, 40(1), 37–54. doi: 10.3975/cagsb.2018.101601. |
Cox SC, McSaveney MJ, Spencer J, Allen SK, Ashraf S, Hancox GT, Sirguey P, Salichon J. Ferris BG. 2015. Rock avalanche on 14 July 2014 from Hillary Ridge, Aoraki/Mount Cook, New Zealand. Landslides, 12, 395–402. doi: 10.1007/s10346-015-0556-7. |
Cui P, Su F, Zou Q, Chen NS, Zhang Y. 2015. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau. Chinese Science Bulletin, 60(32), 3067–3077 (in Chinese). doi: 10.1360/n972015-00849. |
Cui Y, Bao P, Xu C, Fu G, Jiao Q, Luo Y, Shen L, Xu X, Liu F, Lyu Y, Hu X, Li T, Li Y, Liu Y, Tian Y. 2020. A big landslide on the Jinsha River, Tibet, China: Geometric characteristics, causes, and future stability. Natural Hazards, 104(3), 2051–2070. doi: 10.1007/s11069-020-04261-9. |
Cui Y, Yang W, Xu C, Wu S. 2023. Distribution of ancient landslides and landslide hazard assessment in the western Himalayan Syntaxis area. Frontiers in Earth Science, 11, 1135018. doi: 10.3389/feart.2023.1135018. |
Deng J, Han F, Li T, Zhang B, Xu J, Yao Y. 2020. Late-Quaternary slip sense and rate of the Muji fault, northeastern Pamir. Quaternary Sciences, 40(1), 114–123 (in Chinese). doi: 10.11928/j.issn.1001-7410.2020.01.11. |
Dewitte O, Chung CJ, Demoulin A. 2006. Reactivation hazard mapping for ancient landslides in West Belgium. Natural Hazards and Earth System Sciences, 6, 653–662. doi: 10.5194/nhess-6-653-2006. |
Ding H, Zhang M, Li L. 2011. Interpreting landslides in the northwestern Loess Plateau using remote sensing images. Quaternary Sciences, 31(6), 1077–1085 (in Chinese). doi: 10.3969/j.issn.1001-7410.2011.06.15. |
Fan X, Qiao J, Han M, Zeng Y. 2012. Volumes and movement distances of earthquake and rainfall-induced catastrophic landslides. Rock and Soil Mechanics, 33(10), 3051–3058 (in Chinese). doi: 10.16285/j.rsm.2012.10.016. |
Fu W, Wang J, Liu S. 2003. Studies on the distribution rule of ground temperatures in Tarim Oilfield. Journal of Arid Land Resources and Environment, 17(6), 99–102 (in Chinese). doi: 10.13448/j.cnki.jalre.2003.06.019. |
Gardezi H, Bilal M, Cheng Q, Xing A, Zhuang Y, Masood T. 2021. A comparative analysis of Attabad landslide on January 4, 2010, using two numerical models. Natural Hazards, 107(1), 519–538. doi: 10.1007/s11069-021-04593-0. |
Georgi F, Krastanov M. 2015. Evaluation of the Possibilities for Construction on Ancient Landslide. Engineering Geology for Society and Territory, 2, 267–271. doi: 10.1007/978-3-319-09057-3_39. |
Govi M, Gullà G, Nicoletti PG. 2002. Val Pola rock avalanche of July 28, 1987, in Valtellina (Central Italian Alps). Geological Society of America Reviews in Engineering Geology, XV, 71–89. |
Guo C, Zhang Y, Montgomery DR, Du Y, Zhang G, Wang S. 2016. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China? Geomorphology, 259, 145–154. doi: 10.1016/j.geomorph.2016.02.013. |
Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66. doi: 10.1016/j.earscirev.2012.02.001. |
Hattanji T, Moriwaki H. 2009. Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides. Geomorphology, 103(3), 447–454. doi: 10.1016/j.geomorph.2008.07.009. |
Havenith HB, Torgoev A, Schlögel R, Braun A, Torgoev I, Ischuk A. 2015. Tien Shan Geohazards Database: Landslide susceptibility analysis. Geomorphology, 249, 32–43. doi: 10.1016/j.geomorph.2015.03.019. |
Hu S. 2019. Spatial pattern of landslide in Loess Plateau and its influence on geomorphologic evolution. Xi’an, Northwest University, Ph. D thesis, 1–230 (in Chinese). |
Huang Y, Xu C, Li L, He X, Cheng J, Xu X, Li J, Zhang X. 2023. Inventory and spatial distribution of ancient landslides in Hualong county, China. Land, 12(1), 136. doi: 10.3390/land12010136. |
Jiang Y, Yin J. 1992. Huaying Mountain Xikou landslide-debris flow. Geological Hazards and Environment Preservation, 3(2), 51–58 (in Chinese). |
Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C. 2019. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Sciences, 22, 11–24. doi: 10.1016/j.ejrs.2018.03.004. |
Kıncal C, Akgun A, Koca MY. 2009. Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences, 59, 745–756. doi: 10.1007/s12665-009-0070-0. |
Kohno M, Yuki H. 2023. Landslide susceptibility assessment in the Japanese Archipelago based on a landslide distribution map. ISPRS International Journal of Geo-Information, 12(2), 37. doi: 10.3390/ijgi12020037. |
Li L, Lan H, Strom A. 2020. Automatic generation of landslide profile for complementing landslide inventory. Geomatics, Natural Hazards and Risk, 11(1), 1000–1030. doi: 10.1080/19475705.2020.1766578. |
Li L, Lan H, Strom A, Macciotta R. 2022. Landslide length, width, and aspect ratio: Path-dependent measurement and a revisit of nomenclature. Landslides, 19, 3009–3029. doi: 10.1007/s10346-022-01935-2. |
Li L, Xu C, Yao X, Shao B, Ouyang J, Zhang Z, Huang Y. 2022. Large-scale landslides around the reservoir area of Baihetan hydropower station in southwest China: Analysis of the spatial distribution. Natural Hazards Research, 2(3), 218–229. doi: 10.1016/j.nhres.2022.07.002. |
Li L, Xu C, Zhang Z, Huang Y. 2021. Spatial distribution and its control factors of landslides in Longxi County, Gansu Province, China. IOP Conference Series:Earth and Environmental Science, 861(5), 052013. doi: 10.1088/1755-1315/861/5/052013. |
Li W. 2013. Active structure and strong earthquake in Tashkurgan valley, Northeast Pamir Plateau. Beijing, Institute of Geology, China Earthquake Administration, Ph. D thesis, 1–132 (in Chinese). |
Ma D, Cui P, Yang K, Wang Z. 2003. Road hazards of the segment of Xinjiang-Tibet highway in Xinjiang and their primary cause analysis. Journal of Natural Disasters, 12(3), 93–98 (in Chinese). |
Ma S, Xu C. 2019. Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: A case study of the 2013 Lushan, China, Mw6. 6 earthquake. Natural Hazards, 96(1), 389–412. doi: 10.1007/s11069-018-3548-9. |
Ma S, Xu C. 2021. The monitoring of a large ancient landslide in Sichuan Province, China, using interferometric synthetic aperture radar technology and sensitivity analysis in potential landslide mass modeling. IOP Conference Series:Earth and Environmental Science, 861(5), 052009. doi: 10.1088/1755-1315/861/5/052009. |
Ma S, Xu C, Shao X, Xu X, Liu A. 2021. A large old landslide in Sichuan Province, China: surface displacement monitoring and potential instability assessment. Remote Sensing, 13(13), 2552. doi: 10.3390/rs13132552. |
Nilsen TH, Turner BL, Geological Survey (U. S. ). 1975. Influence of Rainfall and Ancient Landslide Deposits on Recent Landslides (1950-71) in Urban Areas of Contra Costa County, California. California, U. S. Government Printing Office, 1–18. |
Pánek T, Hradecký J, Smolková V, Šilhán K. 2008. Giant ancient landslide in the Alma water gap (Crimean Mountains, Ukraine): notes to the predisposition, structure, and chronology. Landslides, 5, 367–378. doi: 10.1007/s10346-008-0129-0. |
Parker RN, Densmore AL, Rosser NJ, de Michele M, Li Y, Huang R, Whadcoat S, Petley DN. 2011. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nature Geoscience, 4(7), 449–452. doi: 10.1038/ngeo1154. |
Qi T, Meng X, Qing F, Zhao Y, Shi W, Chen G, Zhang Y, Li Y, Yue D, Su X, Guo F, Zeng R, Dijkstra T. 2021. Distribution and characteristics of large landslides in a fault zone: A case study of the NE Qinghai-Tibet Plateau. Geomorphology, 379, 107592. doi: 10.1016/j.geomorph.2021.107592. |
Qi W, Yang W, He X, Xu C. 2021. Detecting Chamoli landslide precursors in the Southern Himalayas using remote sensing data. Landslides, 18(10), 3449–3456. doi: 10.1007/s10346-021-01753-y. |
Rana K, Ozturk U, Malik N. 2021. Landslide geometry reveals its trigger. Geophysical Research Letters, 48(4), e2020GL090848. doi: 10.1029/2020GL090848. |
Rao G, Cheng Y, Lin A, Yan B. 2017. Relationship between landslides and active normal faulting in the epicentral area of the AD 1556 M~8.5 Huaxian earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3), 545–554. doi: 10.1007/s12583-017-0900-z. |
Reznichenko NV, Andrews GR, Geater RE, Strom A. 2017. Multiple origins of large hummock deposits in Alai valley, northern Pamir: implications for palaeoclimate reconstructions. Geomorphology, 285, 347–362. doi: 10.1016/j.geomorph.2017.02.019. |
Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Chamlagain D, Godt JW. 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. doi: 10.1016/j.geomorph.2017.01.030. |
Robinson AC, Yin A, Manning CE, Harrison TM, Zhang S-H, Wang X-F. 2004. Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geological Society of America Bulletin, 116(7), 953–973. doi: 10.1130/b25375.1. |
Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH, Wang XF. 2007. Cenozoic evolution of the eastern Pamir: implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. Geological Society of America Bulletin, 119(7-8), 882–896. doi: 10.1130/b25981.1. |
Robinson TR, Davies TRH, Reznichenko NV, De Pascale GP. 2015. The extremely long-runout Komansu rock avalanche in the Trans Alai range, Pamir mountains, southern Kyrgyzstan. Landslides, 12(3), 523–535. doi: 10.1007/s10346-014-0492-y. |
Sato HP, Harp EL. 2009. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides, 6(2), 153–159. doi: 10.1007/s10346-009-0147-6. |
Schurr B, Ratschbacher L, Sippl C, Gloaguen R, Yuan X, Mechie J. 2014. Seismotectonics of the Pamir. Tectonics, 33(8), 1501–1518. doi: 10.1002/2014tc003576. |
Seong YB, Owen LA, Yi C, Finkel RC, Schoenbohm L. 2009. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology, 103(2), 227–250. doi: 10.1016/j.geomorph.2008.04.025. |
Shao X, Ma S, Xu C, Shen L, Lu Y. 2020. Inventory, distribution and geometric characteristics of landslides in Baoshan city, Yunnan Province, China. Sustainability, 12(6), 2433. doi: 10.3390/su12062433. |
Shao X, Ma S, Xu C, Zhang P, Wen B, Tian Y, Zhou Q, Cui Y. 2019. Planet image-based inventorying and machine learning-based susceptibility mapping for the landslides triggered by the 2018 Mw6.6 Tomakomai, Japan earthquake. Remote Sensing, 11(8), 978. doi: 10.3390/rs11080978. |
Shao X, Xu C, Wang P, Li L, He X, Chen Z, Huang Y, Xu X. 2022. Two public inventories of landslides induced by the 10 June 2022 Maerkang Earthquake swarm, China and ancient landslides in the affected area. Natural Hazards Research, 2(4), 269–272. doi: 10.1016/j.nhres.2022.09.001. |
Shi A, Wang Y, Cheng Q, Lin Q, Li T, Wünnemann B. 2023. The largest rock avalanche in China at Iymek, eastern Pamir, and its spectacular emplacement landscape. Geomorphology, 421, 108521. doi: 10.1016/j.geomorph.2022.108521. |
Strom A, Abdrakhmatov K. 2018. Rockslides and rock avalanches of central Asia: Distribution, morphology, and internal structure. Elsevier, 51–90. doi: 10.1016/C2014-0-02190-9. |
Tian Y, Xu C, Chen J, Zhou Q, Shen L. 2017. Geometrical characteristics of earthquake-induced landslides and correlations with control factors: a case study of the 2013 Minxian, Gansu, China, Mw 5.9 event. Landslides, 14, 1915–1927. doi: 10.1007/s10346-017-0835-6. |
Tian Y, Owen LA, Xu C, Shen L, Zhou Q, Figueiredo PM. 2020. Geomorphometry and Statistical Analyses of Landslides Triggered by the 2015 M w 7.8 Gorkha Earthquake and the Mw 7.3 Aftershock, Nepal. Frontiers in Earth Science, 8, 572449. doi: 10.3389/feart.2020.572449. |
Wang J. 2020. The geomorphological characteristics and kinematic mechanism of Tagarma rock avalanche. Chengdu, Southwest Jiaotong University, Master thesis, 1–103 (in Chinese). |
Wang P. 2020. Research on main engineering geology problems of Xinjiang-Tibet railway. Railway Standard Design, 64(4), 7–11, 17 (in Chinese). |
Wang W, Huang Y, Xu C, Li L. 2021. Development and distribution of ancient landslides in the northwest corner of the Tibetan Plateau. IOP Conference Series:Earth and Environmental Science, 861(5), 052034. doi: 10.1088/1755-1315/861/5/052034. |
Wang Y, Cheng Q, Yuan Y, Wang J, Qiu Y, Yin B, Shi A, Guo Z. 2020. Emplacement mechanisms of the Tagarma rock avalanche on the Pamir-western Himalayan syntaxis of the Tibetan Plateau, China. Landslides, 17(3), 527–542. doi: 10.1007/s10346-019-01298-1. |
Wang Y, Cheng Q, Lin Q, Anwen S. 2021. Observations on the sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau, China. Earth Science Frontiers, 28(2), 106–124 (in Chinese). doi: 10.13745/j.esf.sf.2020.9.12. |
Wang Y, Cheng Q, Shi A, Yuan Y, Qiu Y, Yin B. 2019. Characteristics and transport mechanism of the Nyixoi Chongco rock avalanche on the Tibetan Plateau, China. Geomorphology, 343, 92–105. doi: 10.1016/j.geomorph.2019.07.002. |
Wang Y, Dong J, Cheng Q. 2017. Velocity-dependent frictional weakening of large rock avalanche basal facies: implications for rock avalanche hypermobility? Journal of Geophysical Research: Solid Earth, 122(3), 1648–1676. doi: 10.1002/2016jb013624. |
Wang Y, Dong J, Cheng Q. 2018. Normal stress-dependent frictional weakening of large rock avalanche basal facies: implications for the rock avalanche volume effect. Journal of Geophysical Research:Solid Earth, 123(4), 3270–3282. doi: 10.1002/2018jb015602. |
Xu C. 2015. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: principles and case studies. Geoscience Frontiers, 6(6), 825–836. doi: 10.1016/j.gsf.2014.03.004. |
Xu C, Dai F, Xu X, Lee YH. 2012a. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145–146, 70–80. doi: 10.1016/j.geomorph.2011.12.040. |
Xu C, Xu X, Dai F, Saraf AK. 2012b. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers and Geosciences, 46, 317–329. doi: 10.1016/j.cageo.2012.01.002. |
Xu C, Xu X, Shyu JBH, Gao M, Tan X, Ran Y, Zheng W. 2015. Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides, 12(2), 365–385. doi: 10.1007/s10346-014-0546-1. |
Xu C, Shen L, Wang G. 2016. Soft computing in assessment of earthquake-triggered landslide susceptibility. Environmental Earth Sciences, 75(9), 767. doi: 10.1007/s12665-016-5576-7. |
Xu C, Xu X, Yao X, Dai F. 2014a. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461. doi: 10.1007/s10346-013-0404-6. |
Xu C, Xu X, Shyu JBH, Zheng W, Min W. 2014b. Landslides triggered by the 22 July 2013 Minxian–Zhangxian, China, Mw 5.9 earthquake: inventory compiling and spatial distribution analysis. Journal of Asian Earth Sciences, 92, 125–142. doi: 10.1016/j.jseaes.2014.06.014. |
Xu C, Cui Y, Xu X, Bao P, Fu G, Jiang W. 2019. An anthropogenic landslide dammed the Songmai River, a tributary of the Jinsha River in Southwestern China. Natural Hazards, 99(1), 599–608. doi: 10.1007/s11069-019-03740-y. |
Xu Y, Allen MB, Zhang W, Li W, He H. 2020a. Landslide characteristics in the Loess Plateau, northern China. Geomorphology, 359, 107150. doi: 10.1016/j.geomorph.2020.107150. |
Xu Y, Du P, Li W, Zhang W, Tian Q, Xiong R, Wang L. 2020b. A case study on AD 1718 Tongwei M7. 5 earthquake triggered landslides-application of landslide database triggered by historical strong earthquakes on the Loess Plateau. Chinese Journal of Geophysics, 63(3), 1235–1248 (in Chinese). doi: 10.6038/ cjg2020N0146. doi: 10.6038/cjg2020N0146. |
Xu Y, Liu Z, Allen MB, Du P, Zhang W, Li W, Tian Q. 2022. Understanding historical earthquakes by mapping coseismic landslides in the Loess Plateau, northwest China. Earth Surface Processes and Landforms, 47(9), 2266–2282. doi: 10.1002/esp.5375. |
Yin Z, Wei G, Qin X, Li W, Zhao W. 2021. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau. Earth Science Frontiers, 28(2), 46–57. doi: 10.13745/j.esf.sf.2020.9.4. |
Yuan Z. 2012. Nature and timing of large landslides within an active orogeny, NE Pamir, China. Beijing, Institute of Geology, China Earthquake Administration, Master thesis, 1–67 (in Chinese). |
Yuan Z, Chen J, Owen LA, Hedrick KA, Caffee MW, Li W, Schoenbohm LM, Robinson AC. 2013. Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology, 182, 49–65. doi: 10.1016/j.geomorph.2012.10.028. |
Zhang X, Lei L, Xu C. 2022. Large-scale landslide inventory and their mobility in Lvliang City, Shanxi Province, China. Natural Hazards Research, 2(2), 111–120. doi: 10.1016/j.nhres.2022.05.002. |
Zhang Y, Wu R, Guo C, Wang L, Yao X, Yang Z. 2018. Research progress and prospect on reactivation of ancient landslides. Advances in Earth Science, 33(7), 728–740 (in Chinese). doi: 10.11867/j.issn.1001-8166.2018.07.0728. |
Zhao B, Su L, Wang Y, Ji F, Li W, Tang C. 2021. Insights into the mobility characteristics of seismic earthflows related to the Palu and eastern Iburi earthquakes. Geomorphology, 391, 107886. doi: 10.1016/j.geomorph.2021.107886. |
Zhao B, Wang Y, Chen M, Luo Y, Liang R, Li J. 2019. Typical characteristics of large-scale landslides in the transition belt between the Qinghai-Tibet Plateau and the Loess Plateau. Arabian Journal of Geosciences, 12(15), 470. doi: 10.1007/s12517-019-4612-9. |
Zhao B, Su L, Xu Q, Li W, Xu C, Wang Y. 2023. A review of recent earthquake-induced landslides on the Tibetan Plateau. Earth-Science Reviews, 244, 104534. doi: 10.1016/j.earscirev.2023.104534. |
Zheng S, Zang L, Duan S. 2018. A study on the characteristics and distribution of debris flow landslides in the mountainous areas of Qinghai-Tibet plateau. China's Manganese Industry, 36(4), 181–183 (in Chinese). doi: 10.14101/j.cnki.issn.1002-4336.2018.04.045. |
Zhu Y, Dai F, Yao X, Tu X, Shi X. 2019. Field investigation and numerical simulation of the seismic triggering mechanism of the Tahman landslide in eastern Pamir, northwest China. Bulletin of Engineering Geology and the Environment, 78(8), 5795–5809. doi: 10.1007/s10064-019-01541-y. |
Zhuang J, Ma P, Zhan J, Zhu Y, Kong J, Zhu X, Leng Y, Peng J. 2022. Empirical relationships of the landslides in the Chinese Loess Plateau and affect factors analysis. Geomatics, Natural Hazards and Risk, 13(1), 250–266. doi: 10.1080/19475705.2021.2020174. |
Tectonic background of the study area.
Geological map of the study area.
Map of influencing factors: a‒slope angle; b‒slope aspect; c‒distance to faults; d‒distance to roads; e‒distance to rivers; and f‒annual precipitation.
Demonstration of typical landslides in the study area. a‒Typical landslide locations in the study area; b‒located at 75.16°E, 39.21°N; c‒located at 75.24°E, 38.92°N; d‒located at 75.04°E, 38.78°N; e‒located at 75.19°E, 38.09°N; and f‒located at 75.68°E, 37.82°N.
Landslides photos on field. a‒c‒Iymek rock avalanche modified from Shi A et al. (2023); d‒landslides located at the southwest foot of Muztag Mountain was modified from Yuan Z et al. (2013); e‒f‒parts of Bile Jiyi landslide modified from Yuan Z et al. (2013); g‒Taheman landslide modified from Yuan Z et al. (2013); h‒Bulunkou landslide modified from Yuan Z et al. (2013); i‒a part of Attabad landslide modified from Gardezi H et al. (2021).
Distribution of landslides in the study area.
Relationship between landslides and factors. a‒Elevation; b‒average slope angle; c‒maximum slope angle; d‒slope aspect; e‒distance from the faults; f‒stratum; g‒distance from the roads; h‒distance from the rivers; and i‒annual precipitation.
Landslide H/L Schematic.
Landslide H-L relationship diagram.
Location of landslides with respect to ridges and streams.