Citation: | Bin Lin, Ju-xing Tang, Pan Tang, Wen-bao Zheng, Yang Song, Fa-qiao Li, Qiu-feng Leng, Zhi-chao Wang, Jing Qi, Miao Sun, Juan David Bello Rodríguez, 2023. Geology, geochronology, and exploration of the Jiama giant porphyry copper deposit (11 Mt), Tibet, China: A review, China Geology, 6, 338-357. doi: 10.31035/cg2023031 |
Jiama, with more than 11 Mt of copper metal, is the largest porphyry-skarn copper system in the Gangdese metallogenic belt, Tibet, China, creating ideal conditions for deciphering the origin of porphyry ores in a collision setting. Despite massive studies of the geology, chronology, petrogenesis, and ore-related fluids and their sources in Jiama, there is a lack of systematic summaries and reviews of this system. In contrast to traditional porphyry copper systems in a subduction setting, recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu, skarn-type Cu polymetallic, vein-type Au and manto orebodies. This paper reviews the latest studies on the geology, chronology, petrogenesis, fluid inclusions, and isotopic geochemistry (hydrogen, oxygen, sulfur, and lead) of the Jiama deposit. Accordingly, a multi-center complex mineralization model was constructed, indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers. These centers are mutually independent and form various orebodies or are superimposed on each other and form thick, high-grade orebodies. Finally, a new comprehensive exploration model was established for the Jiama porphyry copper system. Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zone: Melting of thickened lower crust in southern Tibet. Geology, 31, 1021–1024. doi: 10.1130/G19796.1. |
Cooke DR, Hollings P, Walsh JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100, 801–818. doi: 10.2113/gsecongeo.100.5.801. |
Duan JL, Tang JX, Mason R, Zheng WB, Ying LJ. 2014. Zircon U-Pb age and deformation characteristics of the Jiama porphyry copper deposit, Tibet: Implications for relationships between mineralization, structure and alteration. Resource Geology, 64, 316–331. doi: 10.1111/rge.12043. |
Du GS, Yao P, Pan FC, Su DK, Li WB, Ning YY. 1998. Sedimentation-exhalation Skarn and its mineralization: An example from the Jiama Copper-polymetallic deposit, Tibet. Chengdu, Sichuan Science Publishing House. 82-113 (in Chinese). |
Gatzoubaros M, Quadt AV, Gallhofer D, Rey R. 2014. Magmatic evolution of pre-ore volcanics and porphyry intrusives associated with the Altar Cu-porphyry prospect, Argentina. Journal of South American Earth Sciences, 55, 58–82. doi: 10.1016/j.jsames.2014.06.005. |
Guo N, Cudahy T, Tang JX, Tong QX. 2017. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, Central Tibet using field SWIR spectrometry. Ore Geology Reviews, 108, 147–157. |
Guo WB, Zheng WB, Tang JX, Ying LJ, Wang YY, Lin B. 2014. Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet. Geology in China, 41(2), 510–528. doi: 10.3969/j.issn.1000-3657.2014.02.015. |
Halley S, Dilles JH, Tosdal RM. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Economic Geology, 1, 12–17. doi: 10.5382/SEGnews.2015-100.fea. |
Harrison RL, Maryono A, Norris MS, Rohrlach BD, Cooke DR, Thompson M, Creaser R A, Thiede DS. 2018. Geochronology of the Tumpangpitu porphyry Au-Cu-Mo and High-sulfidation epithermal Au-Ag-Cu deposit: Evidence for pre- and postmineralization diatremes in the Tujuh Bukit district, southeast Java, Indonesia. Economic Geology, 113, 163–192. doi: 10.5382/econgeo.2018.4547. |
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110, 1541–1575. doi: 10.2113/econgeo.110.6.1541. |
Hou ZQ. 2010. Metallogensis of continental collision. Acta Geologica Sinica, 84(1), 30–58 (in Chinese with English abstract). |
Huang YR, Guo N, Tang JX, Shi WX, Ran FQ. 2021. Garnet characteristics associated with Jiama porphyry-skarn Cu deposit 1# skarn orebody, Tibet, using thermal infrared spectroscopy. Minerals, 11, 5. doi: 10.3390/min11010005. |
Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q, Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79, 608–622. doi: 10.1016/j.jseaes.2013.08.009. |
Large S, Wotzlaw, J, Guillong, M, von Quadt A, Heinrich C. A. 2020, Resolving the timescales of magmatic and hydrothermal processes associated with porphyry deposit formation using zircon U-Pb petrochronology. Geochronology, 2, 209‒230. doi: 10.5194/gchron-2-209-2020. |
Leng QF, Tang JX, Zheng WB, Lin B, Wang YY, Tang P, Lin X. 2015. A study of ore-controlling factors of thick and large skarn orebodies in Jiama porphyry metallogenic system, Tibet. Mineral Deposits, 34(2), 273–288 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2015.02.005. |
Leng QF, Tang JX, Zheng WB, Tang P, Lin B. 2022. Skarn mineral assemblage and zonation pattern in the Jiama superlarge deposit, Tibet. Acta Geologica Sinica, 96(2), 574–591 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021045. |
Leng QF. 2016. Skarn diagenesis and metallogenesis in Jiama copper-polymetallic deposit, Tibet. Chengdu, Chengdu university of technology Ph. D thesis, 1‒188 (in Chinese with English abstract). |
Li GM, Rui ZY, Wang GM, Lin FC, Liu B, She HQ, Feng CY, Qu WJ. 2005. Molybdenite Re-Os dating of Jiama and Zhibula polymetallic copper deposits in Gangdese metallogenic belt of Tibet and its significance. Mineral Deposits, 24(5), 481–489 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2005.05.002. |
Li Y, Selby D, Condon D, Tapster, S. 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology, 112, 1419–1440. doi: 10.5382/econgeo.2017.4515. |
Lin B, Tang JX, Chen YC, Song Y, Hall G, Wang Q, Yang C, Fang X, Duan JL, Yang HH. 2017. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O Isotopes. Resources Geology, 67, 1–21. doi: 10.1111/rge.12113. |
Lin B, Tang JX, Zhang Z, Zheng WB, Leng QF, Zhong WT, Ying LJ. 2012. Preliminary study of fissure system in Jiama porphyry deposit of Tibet and its significance. Mineral Deposits, 31(3), 579–589 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.03.015. |
Lin B, Tang JX, Tang P, Zheng WB, Hall G, Chen GL, Zhang ZK. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet: Mineral Deposits, 38(06), 1204‒1222 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2019.06.002. |
Lin B, Tang JX, Chen YC, Michael B., Song Y, Yang HH, Wang Q, He W, Liu ZB. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66, 168–82. doi: 10.1016/j.gr.2018.07.009. |
Lin B, Zhang XG, Pang P, Wang LQ, M. Santosh, Zha X, Zhang XX, Qi J, He L. 2021. Geology and geochronology of the Jinmuguo Mo polymetallic deposit: Implications for the metallogeny of the Bangongco-Nujiang belt of Tibet. Ore Geology Reviews, 139, 104460. doi: 10.1016/j.oregeorev.2021.104460. |
Lin B, Zou B, Tang P, He W, Liu ZY, Qi J, Li FQ, Chen L, Zhang XX, Sun M. 2022. Multiple isotopic dating constrains the time framework (Age) of a porphyry system: A case study from the Sangri Cu-Mo deposit, Bangongco-Nujiang metallogenic belt, Tibet, China, Ore Geology Reviews, 144, 104870. doi: 10.1016/j.oregeorev.2022.104870. |
Lin B, Tang JX, Tang P, Georges B, Crystal F, Li FQ, Qi J, Zheng WB, Sun M, Cao HW, Song Y, Zou B, Zhou A, Leng QF, Yang C. 2023. Multi-pulsed magmatism and duration of hydrothermal system of the giant Jiama porphyry Cu system, Tibet, China. Economic Geology, under review. |
Lin B, Wang LQ, Tang JX, Song Y, Cao HW, Baker M, Zhang LJ, Zhou, X. 2018, Geology, geochronology, geochemical characteristics and origin of Baomai porphyry Cu (Mo) deposit, Yulong Belt, Tibet. Ore Geology Reviews, 92, 186‒204. doi: 10.1016/j.oregeorev.2017.10.025. |
Li C, Qu WJ, Du AD. 2009, Decoupling of Re and Os and migration model of 187Os in coarse-grained molybdenite. Mineral Deposits, 28, 707‒712 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.05.016. |
Meng XY, Richards J, Mao JW, Ye HS, DuFrane S, Creaser R, Marsh J, Petrus J. 2020. The Tongkuangyu Cu deposit, trans-north China orogen: A metamorphosed Paleoproterozoic porphyry Cu deposit. Economic Geology, 115, 51–77. doi: 10.5382/econgeo.4693. |
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR, Li ZL. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(3), 521–533 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2006.03.001. |
Qi J, Tang JX, Lin B, Yang HR, Tang XQ, Tang P, Fang X, Zhang TT, Li FQ, Sun M, Wang MD, Xie JL. 2023. Geochronology, Geochemistry, and Implication of Aplite Dyke in the Giant Jiama Porphyry Copper System, Tibet. Acta Geologica Sinica - English Edition, doi: 10.1111/1755-6724.15037. |
Qin ZP. 2013. Genetic model of the Jiama copper-polymetallic ore deposits, Tibet. Chengdu, Chengdu university of technology, Ph. D thesis, 1–167 (in Chinese with English abstract). |
Qin ZP, Wang XW, Duo J, Tang XQ, Zhou Y, Peng HJ. 2011. LA-ICP-MS U-Pb zircon age of intermediate-acidic intrusive rocks in Jiama of Tibet and its metallogenic significance. Mineral Deposits, 30(2), 339–348 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.014. |
Sun F, Zhang JB, Wang R, Zhou LM, Jeon H, Li YY, Xue QW, Liu SY, Guo N, Luo CH, Xia WJ. 2022. Magmatic evolution and formation of the giant Jiama porphyry-skarn deposit in southern Tibet. Ore Geology Reviews, 145, 104889. doi: 10.1016/j.oregeorev.2022.104889. |
Seedorff E. Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology, 100, 251–298. doi: 10.5382/AV100.10. |
She HQ. Feng CY, Zhang DQ, Pan GT, Li GM. 2005. Characteristics and metallogenic potential of skarn copper-lead-zinc polymetallic deposits in central eastern Gangdese. Mineral Deposits, 24(5), 508–520 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2005.05.005. |
She HQ, Feng CY, Zhang DQ, Li GM, Liu B, Li JW. 2006. Study on the fluid inclusions from Jiama skarn copper polymetallic deposit and Qulong porphyry copper deposit in Gandese copper belt, Tibet. Acta Petrologica Sinica, 22(3), 689–696 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2006.03.018. |
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105, 3–41. doi: 10.2113/gsecongeo.105.1.3. |
Tang JX, Wang DH, Wang XW, Zhong KH, Ying LJ, Zheng WB, Li FJ, Guo N, Qin ZP, Yao XF, Li L, Wang Y, Tang XQ. 2010. Geological features and metallogenic model of the Jiama copper polymetallic deposit in Tibet. Acta Geoscientica Sinica, 31(04), 495–506 (in Chinese with English abstract). doi: 10.3975/cagsb.2010.04.02. |
Tang JX, Deng SL, Zheng WB, Ying LJ, Wang XW, Zhong KH, Qin ZP, Ding F, Li FJ, Tang XQ, Zhong YF and Peng HJ. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar county, Tibet. Mineral Deposits, 30(2), 179–196 (in Chinese with English abstract). |
Tang JX. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts. Acta Petrologica Sinica, 35(3), 617–624 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.01. |
Tang JX, Lang XH, Xie FW, Gao YM, Li ZJ, Huang Y, Ding F, Yang HH, Zhang L, Wang Q, Zhou Y. 2015. Geological characteristics and genesis of the Jurassic No. I porphyry Cu–Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet, Ore Geology Reviews, 70, 438‒456. doi: 10.1016/j.oregeorev.2015.02.008. |
Tang JX, Duo J, Liu HF, Lang XH, Zhang JS, Zheng WB, Ying LJ. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt. Acta Geoscientia Sinica, 33(4), 393–410 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.04.02. |
Tang JX, Wang LQ, Zheng WB, Zhong KH. 2014a. Ore deposits metallogenic regularity and prospecting in the eastern section of the Gangdese metallogenic belt. Acta Geologica Sinica, 88(12), 2545–2555 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2014.12.027. |
Tang JX, Wang Q, Yang C, Ding S, Lang XH, Liu HF, Huang Y, Zheng WB, Wang LQ, Gao YM, Feng J, Duan JL, Song Y, Wang YY, Lin B, Fang X, Zhang Z, Yang YY. 2014b. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: Practice of “absence prospecting” deposit metallogenic series. Mineral Deposits, 33(6), 1151–1170 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2014.06.002. |
Tang P, Tang JX, Zheng WB, Leng QF, Lin B, Tang X Q, Wang H, Gao X, Zhang ZB, Zhou HB. 2017. Is Tongshan orebody in the Jiama copper-polymetallic deposit Manto-type ore? Acta Geoscientica Snica, 38(5), 829‒838 (in Chinese with English abstract). doi: 10.3975/cagsb.2017.05.21. |
Tang P, Tang JX, Wang Y, Lin B, Leng QF, Zhang QZ, He L, Zhang ZB, Sun M, Wu CN, Qi J, Li YX, Dai SJ. 2021. Genesis of the Lakang'e porphyry Mo (Cu) deposit, Tibet: Constraints from geochemistry, geochronology, Sr-Nd-Pb-Hf isotopes, zircon and apatite. Lithos, 380‒381, 105834. doi: 10.1016/j.lithos.2020.105834. |
Tang P, Tang J X, Lin B, Zheng WB, Leng QF, Gao X, Zhang ZB, Zou B, Yang Y. 2019. The multi-factor constraints on the massive metallogenesis of porphyry ore-forming system-Case studies of Jiama superlarge deposit. Acta Petrologica Sinica, in press. |
Wang DH, Tang JX, Ying LJ, Lin B, Ding S. 2011. Hornfels feature in the Jiama ore deposit, Tibet and its significance on deep prospecting. Acta Petrologica Sinica, 27(7), 2103–2108 (in Chinese with English abstract). |
Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC. 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sciences Reviews, 181, 122–143. doi: 10.1016/j.earscirev.2018.02.019. |
Wang YY, Zheng WB, Chen YC, Tang JX, Leng QF, Tang P, Ding S, Zhou Y. 2017. Discussion on the mechanism of seperation of copper and molybdenum in Jima porphyry deposit system, Tibet. Acta Petrologica Sinica, 33(2), 495–514 (in Chinese with English abstract). |
Yao P. Li JG, Gu XX, Zheng MH, Chen JK. 2006. A discussion on the genesis of the stratabound skarn in the Jiama copper and polymetallic deposit of Tibet on the basis of REE and silicon isotope geochemistry. Acta Petrologica et Mineralogica, 25(04), 305–313 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2006.04.006. |
Yang ZM, Goldfarb RJ, Chang ZS. 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Special publication Society of Economic Geologist, 19, 279–300. doi: 10.5382/SP.19.11. |
Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ, Song Y C. 2009. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36, 133–159. doi: 10.1016/j.oregeorev.2009.03.003. |
Yang ZM, Cooke RD. 2019. Porphyry copper deposit in China. Economical Geology, SEG Special Publications, 22, 133–187. doi: 10.5382/SP.22.05. |
Yang Y, Tang JX, Wu CN, Lin B, Tang P, Zhang ZB, He L, Qi J, Li YX. 2020. Typomorphic mineralogical characteristics of pyrrhotite in Jiama Cu polymetallic deposit, Tibet, and its geological significance. Mineral Deposits, 39(2), 337–350 (in Chinese with English abstract). |
Yang ZK, Yang Y, Zhang ZK, Lin B, He J, Zhang ZB, Gao FT, Tang XQ, Tang P, Qi, J, Li YC. 2022. Geochemistry of pyrrhotite in the Jiama deposit, Tibet and its relationship with gold enrichment and precipitation. Geology in China, 49(4), 1198–1213 (in Chinese with English abstract). doi: 10.12029/gc20220411. |
Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211‒280. |
Ying LJ. 2012. The metallogeny of the Jiama copper polymetallic deposit in Tibet. Beijing, Chinese Academy of Geological Sciences, Ph. D thesis, 1‒159 (in Chinese with English abstract). |
Ying LJ, Tang JX, Wang DH, Chang ZS, Qu WJ, Zheng WB. 2009. Re-Os isotopic dating of molybdenite in skarn from the Jiama copper polymetallic deposit of Tibet and its metallogenic significance. Rock and Mineral Analysis, 28(3), 265–268 (in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2009.03.014. |
Ying LJ, Tang JX, Wang DH, Zheng WB, Qin ZP, Zhang L. 2011. Zircon SHRIMP U-Pb dating of porphyry vein from the Jiama copper polymetallic deposit in Tibet and its significance. Acta Petrologica Sinica, 27(7), 2095–2102 (in Chinese with English abstract). |
Ying LJ, Wang DH, Tang JX, Chang ZS, Qu WJ, Zheng WB, Wang H. 2010. Re-Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance. Acta Geologica Sinica, 84(8), 1165–1174 (in Chinese with English abstract). |
Zartman RE, Doe BR. 1981. Plumb tectonics the model. Tectonophysics, 75, 135–162. doi: 10.1016/0040-1951(81)90213-4. |
Zhang ZB, Tang JX, Tang P, Chen GL, Zhang ZK, Gao X, Yang Y. 2019. The origin of the mafic microgranular enclaves from Jiama porphyry Cu polymetallic deposit, Tibet: Implications for magma mixing/mingling and mineralization. Acta Petrologica Sinica, 35(3), 934–952 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.19. |
Zheng, SJ, Zhong H, Bai ZJ, Zhang ZK, Wu CQ. 2021. High-sulfidation veins in the Jiama porphyry system, South Tibet. Mineralium Deposita, 56(2), 205–214. doi: 10.1007/s00126-020-00955-z. |
Zheng WB, Tang JX, Zhong KH, Ying LJ, Leng QF, Ding S, Lin B. 2016. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China. Ore Geology Reviews, 74, 151–169. doi: 10.1016/j.oregeorev.2015.11.024. |
Zheng WB, Liu BL, Tang JX, McKinley JM, Cooper MR, Tang P, Lin B, Li C, Wang L, Zhang D. 2022. Exploration indicators of the Jiama porphyry-skarn deposit, southern Tibet, China. Journal of Geochemical Exploration. 236, 106892. doi: 10.1016/j.gexplo.2022.106982. |
Zheng WB, Tang JX, Wang XW, Wang H, Ying LJ, Zhong YF, Zhong WT. 2012. Analysis on gold metallization in Jiama copper polymetallic deposit, Tibet. Journal of Jilin University (Earth Science Edition), 42(1), 181–196 (in Chinese with English abstract). |
Zhong KH, Li L, Zhou HW, Bai JG, Li W, Zhong WT, Zhang YQ, Lin JQ, Zheng FS, Huang XY, Lu B, Lei B. 2012. Features of Jiama (Gyama)-Kajunguo thrust-gliding nappe tectonic system in Tibet, Acta Geoscientia Sinica, 33(4), 411‒423 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.04.03. |
Zhou Y, Wang XW, Tang JX, Qin ZP, Peng HJ, Li AG, Yang K, Wang H, Li J, Zhang JC. 2011. Origin and evolution of ore-forming fluids from Jiama copper polymetallic deposit in Tibet. Mineral Deposits, 30(2), 231–248 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.006. |
Zhou Y, Tang JX, Qin ZP, Peng HJ. 2012. Sulfur and lead isotope compositions and their geological implications of the Jiama copper polymetallic deposit. Metal Mine, 432(06), 102–105 (in Chinese with English abstract). |
Zou B, Lin B, Zheng WB, Song Y, Tang P, Zhang ZB, Gao X. 2019. The characteristics of alteration and mineralization and geochronology of ore-bearing porphyry in south pit of Jiama copper-polymetallic deposit, Tibet. Acta Petrologica Sinica, 35(3), 953–967 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.20. |
Tectonic setting and regional geology of the Gangdese metallogenic belt in Tibet (modified from 1∶1500000 Tibetan Geological Map).
Geology of the Jiama deposit showing the distribution of metal mineralization (modified from Lin B et al., 2019).
Jiama-Kajunguo thrust fault system and the Jiama porphyry copper system (modified from Lin B et al., 2019).
No. 24 geological section and the distribution of skarn minerals in the Jiama deposit (modified from Zheng WB et al., 2016).
Mineralization in different host rocks in the Jiama deposit, Tibet. a‒Veins and disseminated Mol and Cpy in skarn; b‒Massive Sph-Cpy-Gn-Po in the skarn; c‒Qtz-Mol and Qtz-Py veinlets in hornfels; d‒Qtz-Mol-Cpy veins with Ser halos in hornfels; e‒Qtz-Mol veins in the porphyry; f‒Qtz-Mol-Chl-Cal veins cut by Qtz-Cpy-Py veins with Ser halos in the porphyry. Bio‒biotite; Cpy‒-chalcopyrite; Chl‒chlorite; Grt‒garnet; Gn‒galena; Mol‒molybdenite; Pl‒Plagioclase; Po‒pyrrhotite; Py‒pyrite; Qtz‒quartz; Ser‒sericite.
Photomicrographs of different types of mineralization in the Jiama deposit, Tibet. a‒Cpy, Sph, Cc and Bn mineralization in skarn; b‒Bn and Cpy mineralization in skarn; c‒d‒Cpy, Gn, and Sph mineralization; e‒Mol and Cpy mineralization in porphyry; f‒Au in the Po with Cpy in skarn.
Geology and mineralization of No. 52 (a) and No. 8 (b) geological sections in the Jiama deposit (modified from Lin B et al., 2019).
Paragenesis of the mineralization in the Jiama deposit, Tibet (modified from Leng QF, 2016).
Geochronology of the Jiama deposit, Tibet.
Distribution of mineralization ages and tonnages of porphyry copper deposits in China (modified from Yang ZM et al., 2019).
Plot showing the hydrogen and oxygen isotopic compositions of different minerals in the Jiama deposit, Tibet (modified from Leng QF, 2016).
Sulfur isotopic compositions of different minerals and rocks in the Jiama deposit, Tibet.
Lead isotopic compositions of different rocks and minerals in the Jiama deposit (after Zartman RE and Doe B R, 1981; modified from Zheng WB., 2012).
Comprehensive exploration model of the Jiama deposit, Tibet.