Citation: | Valentina Grebenshchikova, Mikhail Kuzmin, Anna Novopashina, Elena Kuz’mina, 2025. Distribution and role of fluorine in the aquatic ecosystem (mineral springs, groundwater, tributaries, Baikal water, and the Angara water source) of Lake Baikal, Russia, China Geology, 8, 303-313. doi: 10.31035/cg20230100 |
Several conjugate components represent the aquatic ecosystem of Lake Baikal: Baikal water (surface and deep water), groundwater from boreholes, water of numerous Baikal tributaries, cold and hot mineral springs around Lake Baikal, and the Angara River, the only runoff reflecting all this aquatic diversity. River waters in the Baikal region are known to be deficient in some vital elements, including fluorine. This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem. Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method. The study represents the monitoring that was carried out between 1997 and 2022 years. We determine likely causes of high and low fluorine concentrations in the water from different components, propose and substantiate the fluorine sources, geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.
Аlekseev SV, Alekseeva LP, Sholokhov PA, Orgilyanov AI, Kononov AM. 2018. The groundwater and surface water quality in the area of the settlement of Listvyanka. Geography And Natural Resources, 4, 105–114 (in Russian). doi: 10.21782/GiPR0206-1619-2018-4(105-114). |
Alexeeva LP, Alexeev SV, Sholokhov PA, Kononov AM. 2023. Monitoring of Groundwater Quality in Listvyanka Settlement (Southwest Coast of Lake Baikal). Geodynamics & Tectonophysics, 14(2), 1–13. doi: 10.5800/GT-2023-14-2-0697. |
Alieva VI, Zagorul'ko NA. 2013. Vliyanie prirodnyh i tekhnogennyh faktorov na gidrohimicheskij sostav rek promyshlennoj zony g. Irkutska. Voda: himiya i ekologiya, 6, 16–21 (in Russian). |
Вaicalogy: Text-book for students of natural scientific specialties. 2012. Book 1. Novosibirsk, Nauka (in Russian). |
Berdichevsky MN, Vanyan LL, Koshurnikov AV. 1999. Magnetotelluric sounding in the Baikal rift zone. Izvestiya, Physics of the Solid Earth, 35(10), 793–814. |
Didenkov YuN, Bychinskii VA, Lomonosov IS. 2006. The possible existence of an endogenous source of fresh waters in rift settings. Russian Geology and Geophysics, 10, 1098–1102. |
Dobrovolsky VV. 1983. Geography of trace elements. Global scattering. Moscow, Mysl (in Russian). |
Domysheva VM, Sorokovikova LM, Sinyukovich VN, Onishchuk NA, Sakirko MV, Tomberg IV, Zhuchenko NA, Golobokova LP, Khodzher TV. 2019. Ionic Composition of Water in Lake Baikal, Its Tributaries, and the Angara River Source during the Modern Period. Russian Meteorology and Hydrology, 44(10), 687–694. doi: 10.3103/s1068373919100078. |
Efimova NV, Lisetskaya LG, Savchenkov MF. 2022. Fluorine excretion in children at various levels of exposure to emissions from aluminum production. Ekologiya cheloveka (Human Ecology), 29(8), 599–607. doi: 10.17816/humeco106008. |
GOST 13273-88. “Vody mineral’nye pit’evye lechebnye i lechebno-stolovye” (in Russian). |
Grachev MA. 2002. O sovremennom sostoyanii ekologicheskoj sistemy ozera Bajkal. Novosibirsk, Izd-vo SO RAN (in Russian). |
Grebenshchikova VI, Kuzmin MI. 2022. The Cyclic-Wave Character of the Distribution of Chemical Elements in the Water of the Source of the Angara River (Runoff of Lake Baikal). Doklady Earth Sciences, 505, 578–585. doi: 10.1134/S1028334X22080086. |
Grebenshchikova VI, Kuzmin MI, Rukavishnikov VS, Efimova NV, Donskikh IV, Doroshkov AA. 2021. Chemical contamination of soil on urban territories with aluminum production in the Baikal region, Russia. Air, Soil and Water Research, 14, 1–11. doi: 10.1177/11786221211004114. |
Grebenshchikova VI, Lustenberg EE, Kitaev NA, Lomonosov IS. 2008. Geohimiya okruzhayushchej sredy Pribajkal’ya (Bajkal’skij geoekologicheskij poligon). Novosibirsk, Akademicheskoe izd-vo «Geo» (in Russian). |
Grebenshchkova VI, Kuzmin MI, Suslova MY. 2021. Long-term cyclicity of trace element in the Baikal aquatic ecosystem (Russia). Environmental Monitoring and Assessment, 193(5), 260. doi: 10.1007/s10661-021-09021-1. |
Klyuchevskii AV, Grebenshchikova VI, Kuz’min MI, Dem’yanovich VI, Klyuchevskaya AA. 2021. The relationship between powerful geodynamic impacts and an increase in the mercury content of the water of the Angara river source (Baikal rift zone). Russian Geology and Geophysics, 62(2), 239–254. doi: 10.2113/RGG20194139. |
Kontrol' himicheskih i biologicheskih parametrov okruzhayushchej sredy. 1998. Pod redakciej Isaeva L. K. SPB. Ekologo-analiticheskij informacionnyj centr «Soyuz» in Russian. |
Kuz’mina EA, Novopashina AV. 2018. Groundwater outflows and fault density spatial relation in the Baikal rift system (Russia). Acque Sotterranee - Italian Journal of Groundwater, 7(1), 19–27. doi: 10.7343/as-2018-317. |
Kuzmina EA. 2011. Relationship between nitrogen thermal waters and fault tectonics of the Barguzino-Bauntovskaya branch of the basins of the Baikal rift system. PhD thesis. IEC SB, RAS Irkutsk, Russia in Russian. |
Kuzmina ЕА 2022. List of thermal waters of the northeast of the Baikal rift system (53°–56° N, 109°–114° E) and their main characteristics. ESDB repository, GC RAS, Moscow. doi: 10.2205/ESDB-RJES-data-824. |
Letnikov FA 2006, Fluids in endogenic processes and problems of metallogeny. Russian Geology and Geophysics, 47(12), 1271–1281. |
Liu RP, Zhu H, Liu F, Dong Y, El-Wardany RM. 2021. Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4(3), 487–497. doi: 10.31035/cg2021051. |
Liu RP, Liu F, Dong Y, Jiao JG, RM El-Wardany, Zhu LFi. 2022. Microplastic contamination in lacustrine sediments in the Qinghai-Tibet Plateau: Current status and transfer mechanisms. China Geology, 5(3), 421–428. doi: 10.31035/cg2022030. |
Logatchev NA. 1984. The Baikal Rift System. Episodes, 7, 38–42. doi: 10.18814/epiiugs/1984/v7i1/009. |
Logatchev NA. 2003. History and geodynamics of the Baikal rift, Russian Geology and Geophysics, 5, 373–387. |
Lomonosov IS, Grebenshchikova VI, Sklyarova OA, Bryukhanova NN, Noskov DA, Yanovskii LM, Didenkov YN. 2011. Toxic (mercury, berillium) and biogenic (selenium, fluorine) elements in aquatic ecosystems of Baikal Natural Territory. Water Resources, 38(2), 199–210. doi: 10.1134/s0097807811020084. |
Lomonosov IS, Pokatilov YuG. 1986. Biogeochemical Assessment of Natural Waters in Environmental Components in Baikal Region. Geokhimiya tekhnogeneza (Biochemistry of Technogenesis), Novosibirsk, Nauka in Russian. |
Lomonosov IS. 1974. Geohimiya i formirovanie sovremennyh gidroterm Bajkal'skoj riftovoj zony. Novosibirsk, izd-vo Nauka SO RAN in Russian. |
Lukhnev AV, San’kov VA, Miroshnichenko AI, Ashurkov SV, Byzov LM, San’kov AV, Bashkuev YB, Dembelov MG, Calais E. 2013. GPS-measurements of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift system. Russian Geology and Geophysics, 54(11), 1417–1426. doi: 10.1016/j.rgg.2013.10.010. |
Lysak SV. 2002. Heat flow in the zones of active faults in the south of Eastern Siberia. Russian Geology and Geophysics, 8, 791–803. |
Nielsen C, Thybo H. 2009. No Moho uplift below the Baikal Rift Zone: Evidence from a seismic refraction profile across southern Lake Baikal. Journal of geophysical research: Solid Earth, 114(B8), B08306. doi: 10.1029/2008JB005828. |
Noskov DA. 2011. Geochemical features and conditions of the Angara-Vitim granitoid batholith formation (Eastern Cisbaikalia). PhD thesis. IGH SO, RAN Irkutsk, Russia in Russian. |
Novopashina AV, Sankov VA. 2018. Migrations of released seismic energy in various geodynamic conditions. Geodynamics & Tectonophysics, 9(1), 139–163. doi: 10.5800/GT-2018-9-1-0342. |
Novopashina AV, Kuz’mina EA. 2019 Influence of crustal fracturing on the thermal springs and earthquake swarms distribution in the north-east part of the Baikal rift system (Russia). Acque Sotterranee - Italian Journal of Groundwater, 8(2), 23–36. doi: 10.7343/as-2019-360. |
Novopashina AV, Kuz’mina EA. 2017. Earth's Crust Faults Density and Thermal Springs in the Seismic Activity Migration Zone at the Amutsky Swarm Region. The Bulletin of Irkutsk State University». Series «Earth Sciences», 20, 81–90 (in Russian). |
Novopashina AV, Lukhneva OF. 2021. The propagation velocity of seismic activity migrating along the directions of the geodynamic forces prevailing in the northeastern Baikal rift system, Russia. Annals of Geophysics, 64(4), SE436. doi: 10.4401/ag-8654. |
Pavlov SK, Chudnenko KV. 2013. Formation of nitrogen-rich hot springs: Modeling physicochemical interactions in a water-granite system. Geochemistry International, 51(12), 981–993. doi: 10.1134/s0016702913120069. |
Plyusnin AM, Chernyavskii MK, Posokhov VF. 2008. Formation conditions of thermal springs in the Barguzin-Baikal area: evidence from trace element and isotopic composition. Geochemistry International, 46(10), 996–1004. doi: 10.1134/S0016702908100042. |
Plyusnin AM, Zamana LV, Shvartsev SL, Tokarenko OG, Chernyavskii MK. 2013. Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone. Russian Geology and Geophysics, 54(5), 495–508. doi: 10.1016/j.rgg.2013.04.002. |
Plyusnin AM, Khazheeva ZI, Sanzhanova SS, Peryazeva EG, Angakhaeva NA. 2020. Sulfate mineral lakes of western Transbaikalia: formation conditions and chemical composition of waters and bottom sediments. Russian Geology and Geophysics, 61(8), 858–873. doi: 10.15372/RGG2019154. |
Pospeev AV. 2012. The velocity structure of the upper mantle and regional deep thermodynamics of the Baikal rift zone. Geodynamics & Tectonophysics, 3(4), 377–383. doi: 10.5800/GT-2012-3-4-0080. |
Radziminovich YB, Gileva NA, Tubanov TA, Lukhneva OF, Novopashina AV, Tcydypova LR. 2022. The December 9, 2020, Mw 5.5 Kudara earthquake (Middle Baikal, Russia): internet questionnaire hard test and macroseismic data analysis. Bulletin of Earthquake Engineering, 20(3), 1297–1324. doi: 10.1007/s10518-021-01305-8. |
Rossolimo L. 1966. Baikal. Moscow, Nauka (in Russian). |
SANPIN 2.4. 1116-02. Pit'evaya voda. Gigienicheskie trebovaniya k kachestvu pit'evoj vody, rasfasovannoj v emkosti. Kontrol' kachestva (in Russian). |
Seminsky КZh, Tugarina MA. 2011. Results of comprehensive studies of the underground hydrosphere within the western shoulder of the Baikal rift (as exemplified by the Bayandai - Krestovsky cape site). Geodynamics & Tectonophysics, 2(2), 126–144. doi: 10.5800/GT-2011-2-2-0037. |
Sherman SI, Seminsky KZh, Bornyakov SA, Adamovich AN, Lobatskaya RM, Lysak SV, Levi KG. 1992. Faulting in the Lithosphere. Extensional zones. Novosibirsk, Nauka (in Russian). |
Shimaraev MN, Troitskaya ES, Blinov VV, Ivanov VG, Gnatovskii RY. 2012. Upwellings in Lake Baikal. Doklady Earth Sciences, 442(2), 272–276. doi: 10.1134/s1028334x12020183. |
Shimaraev MN, Troitskaya ES. 2018. Current trends in upper water layer temperature in coastal zones of Baikal. Geography and Natural Resources, 39(4), 349–357. doi: 10.1134/S187537281804008X. |
Shvartsev SL, Ryzhenko BN, Alekseev VA, Dutova EM, Kondratieva IA, Kopylova YuG, Lepokurova OE. 2007. Geological evolution and self organizing of water–rock system. V. 2. Water–rock system in conditions of a zone of active water exchange. Novosibirsk, Siberian Branch of the Russian Academy of Science Publ. house (in Russian). |
Shvartsev SL, Zamana LV, Plyusnin AM, Tokarenko OG. 2015. Equilibrium of nitrogen-rich spring waters of the Baikal Rift Zone with host rock minerals as a basis for determining mechanisms of their formation. Geochemistry International, 53(8), 713–725. doi: 10.1134/S0016702915060087. |
Shvartsev SL. 2017. Mechanisms of fluorine accumulation in nitric thermal watersbulletin of the Tomsk polytechnic university. Geo Аssets Engineering, 328(12), 105–115. |
Sklyarov EV, Sklyarova OA, Lavrenchuk AV, Menshagin YuV. 2015. Natural pollutants of Northern Lake Baikal. Environmental Earth Sciences, 74(3), 2143–2155. doi: 10.1007/s12665-015-4201-5. |
Sklyarova OA, Sklyarov EV, Och L, Pastukhov MV, Zagorulko NA. 2017. Rare earth elements in tributaries of Lake Baikal (Siberia, Russia). Applied Geochemistry, 82, 164–176. doi: 10.1016/j.apgeochem.2017.04.018. |
Skuzovatov SYu, Belozerova OYu, Vasil’eva IE, Zarubina OV, Kaneva EV, Sokolnikova YuV, Chubarov VM, Shabanova EV. 2022. Centre of Isotopic and Geochemical Research (IGC SB RAS): Current State of Micro- and Macroanalysis. Geodynamics & Tectonophysics, 13(2), 0585. doi: 10.5800/GT-2022-13-2-0585. |
Speizer GM. 2010. Resort and Recreational Potential of Irkutsk Region. The Bulletin of Irkutsk State University». Series «Earth Sciences», 2, 190–216 (in Russian). |
Suturin AN, Chebykin EP, Malnik VV, Khanaev IV, Minaev AV, Minaev VV. 2016. Te role of anthropogenic factors in the development of ecological stress in the littoral zone ofLake Baikal (water area of the Listvyanka settlement). Geography and Natural Resources. 6, 43–54 (in Russian). |
Ten Brink US, Taylor MH. 2002. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research: Solid Earth, 107(B7), 2132. doi: 10.1029/2001JB000300. |
Turutanov EK. 2018. The anomalies of gravity, deep structure and geodynamics of the Mongol-Siberian region. Irkutsk, Izd-vo IRNITU (in Russian). |
Zamana LV. 2000. Fluorine in nitric hydrotherms of Transbaikalia. Russian Geology and Geophysics, 41(11), 1575–1581. |
Zhmakin IA, Al-Galban LN, Markina AD, Panasenko AS. 2020. Assessment of the effect of fluorine compounds in drinking water on selected human health indicators. Tver State Medical University, 5, 39–49 (in Russian). |
Zorin YA, Turutanov EK, Mordvinova VV, Kozhevnikov VM, Yanovskaya TB, Treussov AV. 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics, 371(1-4), 153–173. doi: 10.1016/S0040-1951(03)00214-2. |
Distribution of fluorine concentrations (mg/L) in the surface waters of the Baikal region (after Grebenshchikova VI et al., 2008).
Schematic map of the geological structure of the Baikal aquatic ecosystem (after Sklyarova OA, 2017).
Scheme of water sampling from the conjugate components of the Baikal ecosystem (blue dots mark Baikal water, squares with dots–sampling sites of deep water and water from the Angara source, red dots–water from boreholes, green circle–water from mineral springs).
Distribution diagram of F- concentrations in the conjugate aquatic components of the Baikal ecosystem (mg/L).
Distribution of fluorine ion concentrations in the water from the estuaries of the Baikal tributaries: Summer of 2007, spring of 2019 and autumn of 2019 (mg/L).
Distribution of F- concentrations (mg/L) in the surface and deep water of Lake Baikal in 2018 to 2020 and 2022 (green lines mark spring and brown lines–autumn).
Monthly (blue) and average annual concentrations (red) of fluorine ion in the water of the Angara source from 1998 to 2022 (mg/L).
A generalized scheme of geological and geochemical model of fluorine influx to the water of the Baikal region (after Lomonosov IS and Pokatilov YuG, 1986; Didenkov YuN et al., 2006) with the additions: 1–Cenozoic deposits (Q–polygenetic facies of the Quaternary molasse formation; N2–coarse-grained clastic molasse formation of the Upper Neogene; N1–fine-grained molassoid formation of the Lower Neogene); 2–Earth’s crust (magmatic and metamorphic formations of the Archean-Proterozoic age, AR+PR); 3–conductive layer according magnetotelluric sounding data (Pospeev AV, 2012); 4–upper mantle roof according velocity structure (Nielsen Ch and Thybo H, 2009); 5–asthenosphere according magnetotelluric sounding data (Berdichevsky MN et al., 1999); 6–modern thermal springs; 7–natural cold water outlets; 8–chemical elements in the gas phase; 9–fractures in rocks; 10–active faults reaching the Moho depth (Seminsk KZ and Tugarina MA, 2011); 11–melatinization zone (Letnikov FA, 2006); 12–direction of supposed fluorine movement; 13–direction of meteoric water movement; 14–precipitation.