2025 Vol. 8, No. 2
Article Contents

Valentina Grebenshchikova, Mikhail Kuzmin, Anna Novopashina, Elena Kuz’mina, 2025. Distribution and role of fluorine in the aquatic ecosystem (mineral springs, groundwater, tributaries, Baikal water, and the Angara water source) of Lake Baikal, Russia, China Geology, 8, 303-313. doi: 10.31035/cg20230100
Citation: Valentina Grebenshchikova, Mikhail Kuzmin, Anna Novopashina, Elena Kuz’mina, 2025. Distribution and role of fluorine in the aquatic ecosystem (mineral springs, groundwater, tributaries, Baikal water, and the Angara water source) of Lake Baikal, Russia, China Geology, 8, 303-313. doi: 10.31035/cg20230100

Distribution and role of fluorine in the aquatic ecosystem (mineral springs, groundwater, tributaries, Baikal water, and the Angara water source) of Lake Baikal, Russia

More Information
  • Several conjugate components represent the aquatic ecosystem of Lake Baikal: Baikal water (surface and deep water), groundwater from boreholes, water of numerous Baikal tributaries, cold and hot mineral springs around Lake Baikal, and the Angara River, the only runoff reflecting all this aquatic diversity. River waters in the Baikal region are known to be deficient in some vital elements, including fluorine. This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem. Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method. The study represents the monitoring that was carried out between 1997 and 2022 years. We determine likely causes of high and low fluorine concentrations in the water from different components, propose and substantiate the fluorine sources, geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.

  • 加载中
  • Аlekseev SV, Alekseeva LP, Sholokhov PA, Orgilyanov AI, Kononov AM. 2018. The groundwater and surface water quality in the area of the settlement of Listvyanka. Geography And Natural Resources, 4, 105–114 (in Russian). doi: 10.21782/GiPR0206-1619-2018-4(105-114).

    Google Scholar

    Alexeeva LP, Alexeev SV, Sholokhov PA, Kononov AM. 2023. Monitoring of Groundwater Quality in Listvyanka Settlement (Southwest Coast of Lake Baikal). Geodynamics & Tectonophysics, 14(2), 1–13. doi: 10.5800/GT-2023-14-2-0697.

    CrossRef Google Scholar

    Alieva VI, Zagorul'ko NA. 2013. Vliyanie prirodnyh i tekhnogennyh faktorov na gidrohimicheskij sostav rek promyshlennoj zony g. Irkutska. Voda: himiya i ekologiya, 6, 16–21 (in Russian).

    Google Scholar

    Вaicalogy: Text-book for students of natural scientific specialties. 2012. Book 1. Novosibirsk, Nauka (in Russian).

    Google Scholar

    Berdichevsky MN, Vanyan LL, Koshurnikov AV. 1999. Magnetotelluric sounding in the Baikal rift zone. Izvestiya, Physics of the Solid Earth, 35(10), 793–814.

    Google Scholar

    Didenkov YuN, Bychinskii VA, Lomonosov IS. 2006. The possible existence of an endogenous source of fresh waters in rift settings. Russian Geology and Geophysics, 10, 1098–1102.

    Google Scholar

    Dobrovolsky VV. 1983. Geography of trace elements. Global scattering. Moscow, Mysl (in Russian).

    Google Scholar

    Domysheva VM, Sorokovikova LM, Sinyukovich VN, Onishchuk NA, Sakirko MV, Tomberg IV, Zhuchenko NA, Golobokova LP, Khodzher TV. 2019. Ionic Composition of Water in Lake Baikal, Its Tributaries, and the Angara River Source during the Modern Period. Russian Meteorology and Hydrology, 44(10), 687–694. doi: 10.3103/s1068373919100078.

    CrossRef Google Scholar

    Efimova NV, Lisetskaya LG, Savchenkov MF. 2022. Fluorine excretion in children at various levels of exposure to emissions from aluminum production. Ekologiya cheloveka (Human Ecology), 29(8), 599–607. doi: 10.17816/humeco106008.

    CrossRef Google Scholar

    GOST 13273-88. “Vody mineral’nye pit’evye lechebnye i lechebno-stolovye” (in Russian).

    Google Scholar

    Grachev MA. 2002. O sovremennom sostoyanii ekologicheskoj sistemy ozera Bajkal. Novosibirsk, Izd-vo SO RAN (in Russian).

    Google Scholar

    Grebenshchikova VI, Kuzmin MI. 2022. The Cyclic-Wave Character of the Distribution of Chemical Elements in the Water of the Source of the Angara River (Runoff of Lake Baikal). Doklady Earth Sciences, 505, 578–585. doi: 10.1134/S1028334X22080086.

    CrossRef Google Scholar

    Grebenshchikova VI, Kuzmin MI, Rukavishnikov VS, Efimova NV, Donskikh IV, Doroshkov AA. 2021. Chemical contamination of soil on urban territories with aluminum production in the Baikal region, Russia. Air, Soil and Water Research, 14, 1–11. doi: 10.1177/11786221211004114.

    Google Scholar

    Grebenshchikova VI, Lustenberg EE, Kitaev NA, Lomonosov IS. 2008. Geohimiya okruzhayushchej sredy Pribajkal’ya (Bajkal’skij geoekologicheskij poligon). Novosibirsk, Akademicheskoe izd-vo «Geo» (in Russian).

    Google Scholar

    Grebenshchkova VI, Kuzmin MI, Suslova MY. 2021. Long-term cyclicity of trace element in the Baikal aquatic ecosystem (Russia). Environmental Monitoring and Assessment, 193(5), 260. doi: 10.1007/s10661-021-09021-1.

    CrossRef Google Scholar

    Klyuchevskii AV, Grebenshchikova VI, Kuz’min MI, Dem’yanovich VI, Klyuchevskaya AA. 2021. The relationship between powerful geodynamic impacts and an increase in the mercury content of the water of the Angara river source (Baikal rift zone). Russian Geology and Geophysics, 62(2), 239–254. doi: 10.2113/RGG20194139.

    CrossRef Google Scholar

    Kontrol' himicheskih i biologicheskih parametrov okruzhayushchej sredy. 1998. Pod redakciej Isaeva L. K. SPB. Ekologo-analiticheskij informacionnyj centr «Soyuz» in Russian.

    Google Scholar

    Kuz’mina EA, Novopashina AV. 2018. Groundwater outflows and fault density spatial relation in the Baikal rift system (Russia). Acque Sotterranee - Italian Journal of Groundwater, 7(1), 19–27. doi: 10.7343/as-2018-317.

    CrossRef Google Scholar

    Kuzmina EA. 2011. Relationship between nitrogen thermal waters and fault tectonics of the Barguzino-Bauntovskaya branch of the basins of the Baikal rift system. PhD thesis. IEC SB, RAS Irkutsk, Russia in Russian.

    Google Scholar

    Kuzmina ЕА 2022. List of thermal waters of the northeast of the Baikal rift system (53°–56° N, 109°–114° E) and their main characteristics. ESDB repository, GC RAS, Moscow. doi: 10.2205/ESDB-RJES-data-824.

    Google Scholar

    Letnikov FA 2006, Fluids in endogenic processes and problems of metallogeny. Russian Geology and Geophysics, 47(12), 1271–1281.

    Google Scholar

    Liu RP, Zhu H, Liu F, Dong Y, El-Wardany RM. 2021. Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4(3), 487–497. doi: 10.31035/cg2021051.

    CrossRef Google Scholar

    Liu RP, Liu F, Dong Y, Jiao JG, RM El-Wardany, Zhu LFi. 2022. Microplastic contamination in lacustrine sediments in the Qinghai-Tibet Plateau: Current status and transfer mechanisms. China Geology, 5(3), 421–428. doi: 10.31035/cg2022030.

    CrossRef Google Scholar

    Logatchev NA. 1984. The Baikal Rift System. Episodes, 7, 38–42. doi: 10.18814/epiiugs/1984/v7i1/009.

    CrossRef Google Scholar

    Logatchev NA. 2003. History and geodynamics of the Baikal rift, Russian Geology and Geophysics, 5, 373–387.

    Google Scholar

    Lomonosov IS, Grebenshchikova VI, Sklyarova OA, Bryukhanova NN, Noskov DA, Yanovskii LM, Didenkov YN. 2011. Toxic (mercury, berillium) and biogenic (selenium, fluorine) elements in aquatic ecosystems of Baikal Natural Territory. Water Resources, 38(2), 199–210. doi: 10.1134/s0097807811020084.

    CrossRef Google Scholar

    Lomonosov IS, Pokatilov YuG. 1986. Biogeochemical Assessment of Natural Waters in Environmental Components in Baikal Region. Geokhimiya tekhnogeneza (Biochemistry of Technogenesis), Novosibirsk, Nauka in Russian.

    Google Scholar

    Lomonosov IS. 1974. Geohimiya i formirovanie sovremennyh gidroterm Bajkal'skoj riftovoj zony. Novosibirsk, izd-vo Nauka SO RAN in Russian.

    Google Scholar

    Lukhnev AV, San’kov VA, Miroshnichenko AI, Ashurkov SV, Byzov LM, San’kov AV, Bashkuev YB, Dembelov MG, Calais E. 2013. GPS-measurements of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift system. Russian Geology and Geophysics, 54(11), 1417–1426. doi: 10.1016/j.rgg.2013.10.010.

    CrossRef Google Scholar

    Lysak SV. 2002. Heat flow in the zones of active faults in the south of Eastern Siberia. Russian Geology and Geophysics, 8, 791–803.

    Google Scholar

    Nielsen C, Thybo H. 2009. No Moho uplift below the Baikal Rift Zone: Evidence from a seismic refraction profile across southern Lake Baikal. Journal of geophysical research: Solid Earth, 114(B8), B08306. doi: 10.1029/2008JB005828.

    CrossRef Google Scholar

    Noskov DA. 2011. Geochemical features and conditions of the Angara-Vitim granitoid batholith formation (Eastern Cisbaikalia). PhD thesis. IGH SO, RAN Irkutsk, Russia in Russian.

    Google Scholar

    Novopashina AV, Sankov VA. 2018. Migrations of released seismic energy in various geodynamic conditions. Geodynamics & Tectonophysics, 9(1), 139–163. doi: 10.5800/GT-2018-9-1-0342.

    CrossRef Google Scholar

    Novopashina AV, Kuz’mina EA. 2019 Influence of crustal fracturing on the thermal springs and earthquake swarms distribution in the north-east part of the Baikal rift system (Russia). Acque Sotterranee - Italian Journal of Groundwater, 8(2), 23–36. doi: 10.7343/as-2019-360.

    Google Scholar

    Novopashina AV, Kuz’mina EA. 2017. Earth's Crust Faults Density and Thermal Springs in the Seismic Activity Migration Zone at the Amutsky Swarm Region. The Bulletin of Irkutsk State University». Series «Earth Sciences», 20, 81–90 (in Russian).

    Google Scholar

    Novopashina AV, Lukhneva OF. 2021. The propagation velocity of seismic activity migrating along the directions of the geodynamic forces prevailing in the northeastern Baikal rift system, Russia. Annals of Geophysics, 64(4), SE436. doi: 10.4401/ag-8654.

    CrossRef Google Scholar

    Pavlov SK, Chudnenko KV. 2013. Formation of nitrogen-rich hot springs: Modeling physicochemical interactions in a water-granite system. Geochemistry International, 51(12), 981–993. doi: 10.1134/s0016702913120069.

    CrossRef Google Scholar

    Plyusnin AM, Chernyavskii MK, Posokhov VF. 2008. Formation conditions of thermal springs in the Barguzin-Baikal area: evidence from trace element and isotopic composition. Geochemistry International, 46(10), 996–1004. doi: 10.1134/S0016702908100042.

    CrossRef Google Scholar

    Plyusnin AM, Zamana LV, Shvartsev SL, Tokarenko OG, Chernyavskii MK. 2013. Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone. Russian Geology and Geophysics, 54(5), 495–508. doi: 10.1016/j.rgg.2013.04.002.

    CrossRef Google Scholar

    Plyusnin AM, Khazheeva ZI, Sanzhanova SS, Peryazeva EG, Angakhaeva NA. 2020. Sulfate mineral lakes of western Transbaikalia: formation conditions and chemical composition of waters and bottom sediments. Russian Geology and Geophysics, 61(8), 858–873. doi: 10.15372/RGG2019154.

    CrossRef Google Scholar

    Pospeev AV. 2012. The velocity structure of the upper mantle and regional deep thermodynamics of the Baikal rift zone. Geodynamics & Tectonophysics, 3(4), 377–383. doi: 10.5800/GT-2012-3-4-0080.

    CrossRef Google Scholar

    Radziminovich YB, Gileva NA, Tubanov TA, Lukhneva OF, Novopashina AV, Tcydypova LR. 2022. The December 9, 2020, Mw 5.5 Kudara earthquake (Middle Baikal, Russia): internet questionnaire hard test and macroseismic data analysis. Bulletin of Earthquake Engineering, 20(3), 1297–1324. doi: 10.1007/s10518-021-01305-8.

    Google Scholar

    Rossolimo L. 1966. Baikal. Moscow, Nauka (in Russian).

    Google Scholar

    SANPIN 2.4. 1116-02. Pit'evaya voda. Gigienicheskie trebovaniya k kachestvu pit'evoj vody, rasfasovannoj v emkosti. Kontrol' kachestva (in Russian).

    Google Scholar

    Seminsky КZh, Tugarina MA. 2011. Results of comprehensive studies of the underground hydrosphere within the western shoulder of the Baikal rift (as exemplified by the Bayandai - Krestovsky cape site). Geodynamics & Tectonophysics, 2(2), 126–144. doi: 10.5800/GT-2011-2-2-0037.

    CrossRef Google Scholar

    Sherman SI, Seminsky KZh, Bornyakov SA, Adamovich AN, Lobatskaya RM, Lysak SV, Levi KG. 1992. Faulting in the Lithosphere. Extensional zones. Novosibirsk, Nauka (in Russian).

    Google Scholar

    Shimaraev MN, Troitskaya ES, Blinov VV, Ivanov VG, Gnatovskii RY. 2012. Upwellings in Lake Baikal. Doklady Earth Sciences, 442(2), 272–276. doi: 10.1134/s1028334x12020183.

    CrossRef Google Scholar

    Shimaraev MN, Troitskaya ES. 2018. Current trends in upper water layer temperature in coastal zones of Baikal. Geography and Natural Resources, 39(4), 349–357. doi: 10.1134/S187537281804008X.

    CrossRef Google Scholar

    Shvartsev SL, Ryzhenko BN, Alekseev VA, Dutova EM, Kondratieva IA, Kopylova YuG, Lepokurova OE. 2007. Geological evolution and self organizing of water–rock system. V. 2. Water–rock system in conditions of a zone of active water exchange. Novosibirsk, Siberian Branch of the Russian Academy of Science Publ. house (in Russian).

    Google Scholar

    Shvartsev SL, Zamana LV, Plyusnin AM, Tokarenko OG. 2015. Equilibrium of nitrogen-rich spring waters of the Baikal Rift Zone with host rock minerals as a basis for determining mechanisms of their formation. Geochemistry International, 53(8), 713–725. doi: 10.1134/S0016702915060087.

    CrossRef Google Scholar

    Shvartsev SL. 2017. Mechanisms of fluorine accumulation in nitric thermal watersbulletin of the Tomsk polytechnic university. Geo Аssets Engineering, 328(12), 105–115.

    Google Scholar

    Sklyarov EV, Sklyarova OA, Lavrenchuk AV, Menshagin YuV. 2015. Natural pollutants of Northern Lake Baikal. Environmental Earth Sciences, 74(3), 2143–2155. doi: 10.1007/s12665-015-4201-5.

    CrossRef Google Scholar

    Sklyarova OA, Sklyarov EV, Och L, Pastukhov MV, Zagorulko NA. 2017. Rare earth elements in tributaries of Lake Baikal (Siberia, Russia). Applied Geochemistry, 82, 164–176. doi: 10.1016/j.apgeochem.2017.04.018.

    CrossRef Google Scholar

    Skuzovatov SYu, Belozerova OYu, Vasil’eva IE, Zarubina OV, Kaneva EV, Sokolnikova YuV, Chubarov VM, Shabanova EV. 2022. Centre of Isotopic and Geochemical Research (IGC SB RAS): Current State of Micro- and Macroanalysis. Geodynamics & Tectonophysics, 13(2), 0585. doi: 10.5800/GT-2022-13-2-0585.

    CrossRef Google Scholar

    Speizer GM. 2010. Resort and Recreational Potential of Irkutsk Region. The Bulletin of Irkutsk State University». Series «Earth Sciences», 2, 190–216 (in Russian).

    Google Scholar

    Suturin AN, Chebykin EP, Malnik VV, Khanaev IV, Minaev AV, Minaev VV. 2016. Te role of anthropogenic factors in the development of ecological stress in the littoral zone ofLake Baikal (water area of the Listvyanka settlement). Geography and Natural Resources. 6, 43–54 (in Russian).

    Google Scholar

    Ten Brink US, Taylor MH. 2002. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research: Solid Earth, 107(B7), 2132. doi: 10.1029/2001JB000300.

    CrossRef Google Scholar

    Turutanov EK. 2018. The anomalies of gravity, deep structure and geodynamics of the Mongol-Siberian region. Irkutsk, Izd-vo IRNITU (in Russian).

    Google Scholar

    Zamana LV. 2000. Fluorine in nitric hydrotherms of Transbaikalia. Russian Geology and Geophysics, 41(11), 1575–1581.

    Google Scholar

    Zhmakin IA, Al-Galban LN, Markina AD, Panasenko AS. 2020. Assessment of the effect of fluorine compounds in drinking water on selected human health indicators. Tver State Medical University, 5, 39–49 (in Russian).

    Google Scholar

    Zorin YA, Turutanov EK, Mordvinova VV, Kozhevnikov VM, Yanovskaya TB, Treussov AV. 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics, 371(1-4), 153–173. doi: 10.1016/S0040-1951(03)00214-2.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(12) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint