Citation: | Mikalai Filonchyk, Michael P. Peterson, 2025. Investigation of a NOx emission from coal power plants in Texas, United States and its impact on the environment, China Geology, 8, 107-116. doi: 10.31035/cg20230093 |
Texas is the largest state by area in the US after Alaska, and one of the top states in the production and consumption of electricity with many coal-fired plants. Coal-fired power plants emit greater than 70% of pollutants in the energy sector. When coal is burned to produce electricity, nitrogen oxides (NOx) are released into the air, one of the main pollutants that threaten human health and lead to a large number of premature deaths. The key to effective air quality management is the strict compliance of all plants with emission standards. However, not all Texas coal plants have the environmental equipment to lower pollutant emissions. Nitrogen dioxide (NO2) observations from the TROPOspheric Monitoring Instrument (TROPOMI) were used to evaluate the emissions for Texas power plants. Data from both the Emissions and Generation Resource Integrated Database (EGRID) and the Emissions Database for Global Atmospheric Research (EDGAR) were used to examine emissions. It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year, with the Martin Lake, Limestone and Fayette Power Project stations being the top emitters. WA Parish and Martin Lake stations have the strongest NOx fluxes, with both exhibiting significant seasonal variability. Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation (r=0.956) and a low root mean square error (0.766). A more reasonable control policy would lead to much reduced NOx emissions.
Ali Abdelkareem M, Elsaid K, Wilberforce T, Kamil M, Sayed ET, Olabi A. 2021. Environmental aspects of fuel cells: A review. Science of the Total Environment, 752, 141803. doi: 10.1016/j.scitotenv.2020.141803. |
Abel D, Holloway T, Kladar RM, Meier P, Ahl D, Harkey M, Patz J. 2017. Response of power plant emissions to ambient temperature in the eastern United States. Environmental Science & Technology, 51(10), 5838–5846. doi: 10.1021/acs.est.6b06201. |
Beirle S, Borger C, Dörner S, Eskes H, Kumar V, de Laat A, Wagner T. 2021. Catalog of NO x emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI. Earth System Science Data, 13(6), 2995–3012. doi: 10.5194/essd-13-2995-2021. |
Brozynski MT, Leibowicz BD. 2018. Decarbonizing power and transportation at the urban scale: An analysis of the Austin, Texas Community Climate Plan. Sustainable Cities and Society, 43, 41–54. doi: 10.1016/j.scs.2018.08.005. |
Cichowicz R, Wielgosiński G, Depta A. 2020. Variations in the atmospheric pollutant immission (2009–2015) field near a large lignite-fired power plant (in Europe/Poland). International Journal of Environmental Science and Technology, 17(5), 3075–3086. doi: 10.1007/s13762-020-02695-z. |
Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, van Aardenne JA, Monni S, Doering U, Olivier JGJ, Pagliari V, Janssens-Maenhout G. 2018. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3. 2. Earth System Science Data, 10(4), 1987–2013. doi: 10.5194/essd-10-1987-2018. |
de Foy B, Schauer JJ. 2022. An improved understanding of NO x emissions in South Asian megacities using TROPOMI NO2 retrievals. Environmental Research Letters, 17(2), 024006. doi: 10.1088/1748-9326/ac48b4. |
Demetillo MAG, Navarro A, Knowles KK, Fields KP, Geddes JA, Nowlan CR, Janz SJ, Judd LM, Al-Saadi J, Sun K, McDonald BC, Diskin GS, Pusede SE. 2020. Observing nitrogen dioxide air pollution inequality using high-spatial-resolution remote sensing measurements in Houston, Texas. Environmental Science & Technology, 54(16), 9882–9895. doi: 10.1021/acs.est.0c01864. |
Dons E, Laeremans M, Anaya-Boig E, Avila-Palencia I, Brand C, de Nazelle A, Gaupp-Berghausen M, Götschi T, Nieuwenhuijsen M, Orjuela JP, Raser E, Standaert A, Int Panis L, on behalf of the PASTA Consortium. 2018. Concern over health effects of air pollution is associated to NO2 in seven European cities. Air Quality, Atmosphere & Health, 11(5), 591–599. doi: 10.1007/s11869-018-0567-3. |
Eckelman MJ, Sherman J. 2016. Environmental impacts of the U. S. health care system and effects on public health. PLoS One, 11(6), e0157014. doi: 10.1371/journal.pone.0157014. |
EIA (US Energy Information Administration). 2022. Natural gas explained: Natural gas and the environment. https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php (Accessed 7 November 2022). |
EIP (Environmental Integrity Project). 2022. Environmental groups sue EPA over pollution from eight Texas coal plants. https://environmentalintegrity.org/news/environmental-groups-sue-epa-over-pollution-from-eight-texas-coal-plants/ (Accessed 10 October 2022). |
EPA (US Environmental Protection Agency). 2022a. Emissions and Generation Resource Integrated Database (eGRID). https://www.epa.gov/egrid (Accessed 17 May 2022). |
EPA (US Environmental Protection Agency). 2022b. National Electric Energy Data System (NEEDS) v6. https://www.epa.gov/power-sector-modeling/national-electric-energy-data-system-needs-v6 (Accessed 9 November 2022). |
Filonchyk M, Peterson MP. 2023. An integrated analysis of air pollution from US coal-fired power plants. Geoscience Frontiers, 14(2), 101498. doi: 10.1016/j.gsf.2022.101498. |
Gilbert AQ, Sovacool BK. 2017. Benchmarking natural gas and coal-fired electricity generation in the United States. Energy, 134, 622–628. doi: 10.1016/j.energy.2017.05.194. |
Goldberg DL, Anenberg SC, Griffin D, McLinden CA, Lu ZF, Streets DG. 2020. Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability. Geophysical Research Letters, 47(17), e2020GL089269. doi: 10.1029/2020GL089269. |
Grant D, Zelinka D, Mitova S. 2021. Reducing CO$2$ emissions by targeting the world’s hyper-polluting power plants. Environmental Research Letters, 16(9), 094022. doi: 10.1088/1748-9326/ac13f1. |
Guttikunda SK, Jawahar P. 2014. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449–460. doi: 10.1016/j.atmosenv.2014.04.057. |
Hilboll A, Richter A, Burrows JP. 2013. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmospheric Chemistry and Physics, 13(8), 4145–4169. doi: 10.5194/acp-13-4145-2013. |
Ibusuki T, Takeuchi K. 1994. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. Journal of Molecular Catalysis, 88(1), 93–102. doi: 10.1016/0304-5102(93)E0247-E. |
Jiang X, Yang ZL. 2012. Projected changes of temperature and precipitation in Texas from downscaled global climate models. Climate Research, 53(3), 229–244. doi: 10.3354/cr01093. |
Kim C, Henneman LRF, Choirat C, Zigler CM. 2020. Health effects of power plant emissions through ambient air quality. Journal of the Royal Statistical Society Series A: Statistics in Society, 183(4), 1677–1703. doi: 10.1111/rssa.12547. |
Kumar A, Dhakhwa S, Dikshit AK. 2022. Comparative evaluation of fitness of interpolation techniques of ArcGIS using leave-one-out scheme for air quality mapping. Journal of Geovisualization and Spatial Analysis, 6(1), 9. doi: 10.1007/s41651-022-00102-4. |
Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J. 2010. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmospheric Environment, 44(19), 2341–2349. doi: 10.1016/j.atmosenv.2010.03.038. |
Levy JI, Spengler JD. 2002. Modeling the benefits of power plant emission controls in Massachusetts. Journal of the Air & Waste Management Association, 52(1), 5–18. doi: 10.1080/10473289.2002.10470753. |
Li J, Carlson BE, Yung YL, Lv DR, Hansen J, Penner JE, Liao H, Ramaswamy V, Kahn RA, Zhang P, Dubovik O, Ding AJ, Lacis AA, Zhang L, Dong YM. 2022. Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 3, 363–379. doi: 10.1038/s43017-022-00296-7. |
Liu F, Duncan BN, Krotkov NA, Lamsal LN, Beirle S, Griffin D, McLinden CA, Goldberg DL, Lu ZF. 2020. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1), 99–116. doi: 10.5194/acp-20-99-2020. |
Liu LX, Cheng YF, Wang SW, Wei C, Pöhlker ML, Pöhlker C, Artaxo P, Shrivastava M, Andreae MO, Pöschl U, Su H. 2020. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol–cloud and aerosol–radiation interactions. Atmospheric Chemistry and Physics, 20(21), 13283–13301. doi: 10.5194/acp-20-13283-2020. |
Liu YY, Gao FY, Yi HH, Yang C, Zhang RC, Zhou YS, Tang XL. 2021. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: A review on catalysts and mechanisms. Environmental Science and Pollution Research International, 28(3), 2549–2571. doi: 10.1007/s11356-020-11253-6. |
Marais EA, Roberts JF, Ryan RG, Eskes H, Boersma KF, Choi S, Joiner J, Abuhassan N, Redondas A, Grutter M, Cede A, Gomez L, Navarro-Comas M. 2021. New observations of NO2 in the upper troposphere from TROPOMI. Atmospheric Measurement Techniques, 14(3), 2389–2408. doi: 10.5194/amt-14-2389-2021. |
Nassar R, Hill TG, McLinden CA, Wunch D, Jones DBA, Crisp D. 2017. Quantifying CO2 emissions from individual power plants from space. Geophysical Research Letters, 44(19), 10045–10053. doi: 10.1002/2017gl074702. |
Oberschelp C, Pfister S, Raptis CE, Hellweg S. 2019. Global emission hotspots of coal power generation. Nature Sustainability, 2, 113–121. doi: 10.1038/s41893-019-0221-6. |
Pirjola L, Paasonen P, Pfeiffer D, Hussein T, Hämeri K, Koskentalo T, Virtanen A, Rönkkö T, Keskinen J, Pakkanen TA, Hillamo RE. 2006. Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmospheric Environment, 40(5), 867–879. doi: 10.1016/j.atmosenv.2005.10.018. |
Prunet P, Lezeaux O, Camy-Peyret C, Thevenon H. 2020. Analysis of the NO2 tropospheric product from S5P TROPOMI for monitoring pollution at city scale. City and Environment Interactions, 8, 100051. doi: 10.1016/j.cacint.2020.100051. |
Rap A, Scott CE, Spracklen DV, Bellouin N, Forster PM, Carslaw KS, Schmidt A, Mann G. 2013. Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 40(12), 3297–3301. doi: 10.1002/grl.50441. |
Saw GK, Dey S, Kaushal H, Lal K. 2021. Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, 259, 118514. doi: 10.1016/j.atmosenv.2021.118514. |
Strasert B, Teh SC, Cohan DS. 2019. Air quality and health benefits from potential coal power plant closures in Texas. Journal of the Air & Waste Management Association, 69(3), 333–350. doi: 10.1080/10962247.2018.1537984. |
Tian XL, An CJ, Nik-Bakht M, Chen ZK. 2022. Assessment of reductions in NO2 emissions from thermal power plants in Canada based on the analysis of policy, inventory, and satellite data. Journal of Cleaner Production, 341, 130859. doi: 10.1016/j.jclepro.2022.130859. |
Tirumalachetty S, Kockelman KM, Nichols BG. 2013. Forecasting greenhouse gas emissions from urban regions: Microsimulation of land use and transport patterns in Austin, Texas. Journal of Transport Geography, 33, 220–229. doi: 10.1016/j.jtrangeo.2013.08.002. |
Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng GN, Xue T, Li M, Hong CP, Lu ZF, Streets DG, Guan DB, He KB. 2018. Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 1, 59–68. doi: 10.1038/s41893-017-0003-y. |
Uddin MS, Czajkowski KP. 2022. Performance assessment of spatial interpolation methods for the estimation of atmospheric carbon dioxide in the wider geographic extent. Journal of Geovisualization and Spatial Analysis, 6(1), 10. doi: 10.1007/s41651-022-00105-1. |
van Caneghem J, De Greef J, Block C, Vandecasteele C. 2016. NO x reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study. Journal of Cleaner Production, 112, 4452–4460. doi: 10.1016/j.jclepro.2015.08.068. |
van Geffen JHGM, Boersma KF, Van Roozendael M, Hendrick F, Mahieu E, De Smedt I, Sneep M, Veefkind JP. 2015. Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window. Atmospheric Measurement Techniques, 8(4), 1685–1699. doi: 10.5194/amt-8-1685-2015. |
van Geffen JHGM, Eskes HJ, Boersma KF, Maasakkers JD, Veefkind JP. 2019. TROPOMI ATBD of the total and tropospheric NO2 data products. CI-7430-ATBD 1.4. 0. https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products. |
Wang CG, Soden BJ, Yang WC, Vecchi GA. 2021. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophysical Research Letters, 48(4), e2020GL091024. doi: 10.1029/2020gl091024. |
Yu QY, Gu YL, Yang SY, Zhou MJ. 2021. Discovering spatiotemporal patterns and urban facilities determinants of cycling activities in Beijing. Journal of Geovisualization and Spatial Analysis, 5(1), 16. doi: 10.1007/s41651-021-00084-9. |
Yu ZX, Li X. 2022. The temporal–spatial characteristics of column NO2 concentration and influence factors in Xinjiang of northwestern arid region in China. Atmosphere, 13(10), 1533. doi: 10.3390/atmos13101533. |
Zhou XL, Gao HL, He Y, Huang G, Bertman SB, Civerolo K, Schwab J. 2003. Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. Geophysical Research Letters, 30(23), 2003GL018620. doi: 10.1029/2003gl018620. |
Location and capacity in MW of power plants in Texas, USA.
Population density and TROPOMI NO2 VCDs over Texas.
EGRID NOx emission and comparison between EGRID and EDGAR emissions for 2018.
Seasonal mean distribution of TROPOMI NO2 VCDs (μmol/m2) over Texas during period from May 2018 to May 2021.