2025 Vol. 8, No. 1
Article Contents

Mikalai Filonchyk, Michael P. Peterson, 2025. Investigation of a NOx emission from coal power plants in Texas, United States and its impact on the environment, China Geology, 8, 107-116. doi: 10.31035/cg20230093
Citation: Mikalai Filonchyk, Michael P. Peterson, 2025. Investigation of a NOx emission from coal power plants in Texas, United States and its impact on the environment, China Geology, 8, 107-116. doi: 10.31035/cg20230093

Investigation of a NOx emission from coal power plants in Texas, United States and its impact on the environment

More Information
  • Texas is the largest state by area in the US after Alaska, and one of the top states in the production and consumption of electricity with many coal-fired plants. Coal-fired power plants emit greater than 70% of pollutants in the energy sector. When coal is burned to produce electricity, nitrogen oxides (NOx) are released into the air, one of the main pollutants that threaten human health and lead to a large number of premature deaths. The key to effective air quality management is the strict compliance of all plants with emission standards. However, not all Texas coal plants have the environmental equipment to lower pollutant emissions. Nitrogen dioxide (NO2) observations from the TROPOspheric Monitoring Instrument (TROPOMI) were used to evaluate the emissions for Texas power plants. Data from both the Emissions and Generation Resource Integrated Database (EGRID) and the Emissions Database for Global Atmospheric Research (EDGAR) were used to examine emissions. It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year, with the Martin Lake, Limestone and Fayette Power Project stations being the top emitters. WA Parish and Martin Lake stations have the strongest NOx fluxes, with both exhibiting significant seasonal variability. Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation (r=0.956) and a low root mean square error (0.766). A more reasonable control policy would lead to much reduced NOx emissions.

  • 加载中
  • Ali Abdelkareem M, Elsaid K, Wilberforce T, Kamil M, Sayed ET, Olabi A. 2021. Environmental aspects of fuel cells: A review. Science of the Total Environment, 752, 141803. doi: 10.1016/j.scitotenv.2020.141803.

    CrossRef Google Scholar

    Abel D, Holloway T, Kladar RM, Meier P, Ahl D, Harkey M, Patz J. 2017. Response of power plant emissions to ambient temperature in the eastern United States. Environmental Science & Technology, 51(10), 5838–5846. doi: 10.1021/acs.est.6b06201.

    CrossRef Google Scholar

    Beirle S, Borger C, Dörner S, Eskes H, Kumar V, de Laat A, Wagner T. 2021. Catalog of NO x emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI. Earth System Science Data, 13(6), 2995–3012. doi: 10.5194/essd-13-2995-2021.

    CrossRef Google Scholar

    Brozynski MT, Leibowicz BD. 2018. Decarbonizing power and transportation at the urban scale: An analysis of the Austin, Texas Community Climate Plan. Sustainable Cities and Society, 43, 41–54. doi: 10.1016/j.scs.2018.08.005.

    CrossRef Google Scholar

    Cichowicz R, Wielgosiński G, Depta A. 2020. Variations in the atmospheric pollutant immission (2009–2015) field near a large lignite-fired power plant (in Europe/Poland). International Journal of Environmental Science and Technology, 17(5), 3075–3086. doi: 10.1007/s13762-020-02695-z.

    CrossRef Google Scholar

    Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, van Aardenne JA, Monni S, Doering U, Olivier JGJ, Pagliari V, Janssens-Maenhout G. 2018. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3. 2. Earth System Science Data, 10(4), 1987–2013. doi: 10.5194/essd-10-1987-2018.

    CrossRef Google Scholar

    de Foy B, Schauer JJ. 2022. An improved understanding of NO x emissions in South Asian megacities using TROPOMI NO2 retrievals. Environmental Research Letters, 17(2), 024006. doi: 10.1088/1748-9326/ac48b4.

    CrossRef Google Scholar

    Demetillo MAG, Navarro A, Knowles KK, Fields KP, Geddes JA, Nowlan CR, Janz SJ, Judd LM, Al-Saadi J, Sun K, McDonald BC, Diskin GS, Pusede SE. 2020. Observing nitrogen dioxide air pollution inequality using high-spatial-resolution remote sensing measurements in Houston, Texas. Environmental Science & Technology, 54(16), 9882–9895. doi: 10.1021/acs.est.0c01864.

    CrossRef Google Scholar

    Dons E, Laeremans M, Anaya-Boig E, Avila-Palencia I, Brand C, de Nazelle A, Gaupp-Berghausen M, Götschi T, Nieuwenhuijsen M, Orjuela JP, Raser E, Standaert A, Int Panis L, on behalf of the PASTA Consortium. 2018. Concern over health effects of air pollution is associated to NO2 in seven European cities. Air Quality, Atmosphere & Health, 11(5), 591–599. doi: 10.1007/s11869-018-0567-3.

    Google Scholar

    Eckelman MJ, Sherman J. 2016. Environmental impacts of the U. S. health care system and effects on public health. PLoS One, 11(6), e0157014. doi: 10.1371/journal.pone.0157014.

    CrossRef Google Scholar

    EIA (US Energy Information Administration). 2022. Natural gas explained: Natural gas and the environment. https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php (Accessed 7 November 2022).

    Google Scholar

    EIP (Environmental Integrity Project). 2022. Environmental groups sue EPA over pollution from eight Texas coal plants. https://environmentalintegrity.org/news/environmental-groups-sue-epa-over-pollution-from-eight-texas-coal-plants/ (Accessed 10 October 2022).

    Google Scholar

    EPA (US Environmental Protection Agency). 2022a. Emissions and Generation Resource Integrated Database (eGRID). https://www.epa.gov/egrid (Accessed 17 May 2022).

    Google Scholar

    EPA (US Environmental Protection Agency). 2022b. National Electric Energy Data System (NEEDS) v6. https://www.epa.gov/power-sector-modeling/national-electric-energy-data-system-needs-v6 (Accessed 9 November 2022).

    Google Scholar

    Filonchyk M, Peterson MP. 2023. An integrated analysis of air pollution from US coal-fired power plants. Geoscience Frontiers, 14(2), 101498. doi: 10.1016/j.gsf.2022.101498.

    CrossRef Google Scholar

    Gilbert AQ, Sovacool BK. 2017. Benchmarking natural gas and coal-fired electricity generation in the United States. Energy, 134, 622–628. doi: 10.1016/j.energy.2017.05.194.

    CrossRef Google Scholar

    Goldberg DL, Anenberg SC, Griffin D, McLinden CA, Lu ZF, Streets DG. 2020. Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability. Geophysical Research Letters, 47(17), e2020GL089269. doi: 10.1029/2020GL089269.

    CrossRef Google Scholar

    Grant D, Zelinka D, Mitova S. 2021. Reducing CO$2$ emissions by targeting the world’s hyper-polluting power plants. Environmental Research Letters, 16(9), 094022. doi: 10.1088/1748-9326/ac13f1.

    CrossRef Google Scholar

    Guttikunda SK, Jawahar P. 2014. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449–460. doi: 10.1016/j.atmosenv.2014.04.057.

    CrossRef Google Scholar

    Hilboll A, Richter A, Burrows JP. 2013. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmospheric Chemistry and Physics, 13(8), 4145–4169. doi: 10.5194/acp-13-4145-2013.

    CrossRef Google Scholar

    Ibusuki T, Takeuchi K. 1994. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. Journal of Molecular Catalysis, 88(1), 93–102. doi: 10.1016/0304-5102(93)E0247-E.

    CrossRef Google Scholar

    Jiang X, Yang ZL. 2012. Projected changes of temperature and precipitation in Texas from downscaled global climate models. Climate Research, 53(3), 229–244. doi: 10.3354/cr01093.

    CrossRef Google Scholar

    Kim C, Henneman LRF, Choirat C, Zigler CM. 2020. Health effects of power plant emissions through ambient air quality. Journal of the Royal Statistical Society Series A: Statistics in Society, 183(4), 1677–1703. doi: 10.1111/rssa.12547.

    CrossRef Google Scholar

    Kumar A, Dhakhwa S, Dikshit AK. 2022. Comparative evaluation of fitness of interpolation techniques of ArcGIS using leave-one-out scheme for air quality mapping. Journal of Geovisualization and Spatial Analysis, 6(1), 9. doi: 10.1007/s41651-022-00102-4.

    CrossRef Google Scholar

    Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J. 2010. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmospheric Environment, 44(19), 2341–2349. doi: 10.1016/j.atmosenv.2010.03.038.

    CrossRef Google Scholar

    Levy JI, Spengler JD. 2002. Modeling the benefits of power plant emission controls in Massachusetts. Journal of the Air & Waste Management Association, 52(1), 5–18. doi: 10.1080/10473289.2002.10470753.

    CrossRef Google Scholar

    Li J, Carlson BE, Yung YL, Lv DR, Hansen J, Penner JE, Liao H, Ramaswamy V, Kahn RA, Zhang P, Dubovik O, Ding AJ, Lacis AA, Zhang L, Dong YM. 2022. Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 3, 363–379. doi: 10.1038/s43017-022-00296-7.

    CrossRef Google Scholar

    Liu F, Duncan BN, Krotkov NA, Lamsal LN, Beirle S, Griffin D, McLinden CA, Goldberg DL, Lu ZF. 2020. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1), 99–116. doi: 10.5194/acp-20-99-2020.

    CrossRef Google Scholar

    Liu LX, Cheng YF, Wang SW, Wei C, Pöhlker ML, Pöhlker C, Artaxo P, Shrivastava M, Andreae MO, Pöschl U, Su H. 2020. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol–cloud and aerosol–radiation interactions. Atmospheric Chemistry and Physics, 20(21), 13283–13301. doi: 10.5194/acp-20-13283-2020.

    CrossRef Google Scholar

    Liu YY, Gao FY, Yi HH, Yang C, Zhang RC, Zhou YS, Tang XL. 2021. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: A review on catalysts and mechanisms. Environmental Science and Pollution Research International, 28(3), 2549–2571. doi: 10.1007/s11356-020-11253-6.

    CrossRef Google Scholar

    Marais EA, Roberts JF, Ryan RG, Eskes H, Boersma KF, Choi S, Joiner J, Abuhassan N, Redondas A, Grutter M, Cede A, Gomez L, Navarro-Comas M. 2021. New observations of NO2 in the upper troposphere from TROPOMI. Atmospheric Measurement Techniques, 14(3), 2389–2408. doi: 10.5194/amt-14-2389-2021.

    CrossRef Google Scholar

    Nassar R, Hill TG, McLinden CA, Wunch D, Jones DBA, Crisp D. 2017. Quantifying CO2 emissions from individual power plants from space. Geophysical Research Letters, 44(19), 10045–10053. doi: 10.1002/2017gl074702.

    CrossRef Google Scholar

    Oberschelp C, Pfister S, Raptis CE, Hellweg S. 2019. Global emission hotspots of coal power generation. Nature Sustainability, 2, 113–121. doi: 10.1038/s41893-019-0221-6.

    CrossRef Google Scholar

    Pirjola L, Paasonen P, Pfeiffer D, Hussein T, Hämeri K, Koskentalo T, Virtanen A, Rönkkö T, Keskinen J, Pakkanen TA, Hillamo RE. 2006. Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmospheric Environment, 40(5), 867–879. doi: 10.1016/j.atmosenv.2005.10.018.

    CrossRef Google Scholar

    Prunet P, Lezeaux O, Camy-Peyret C, Thevenon H. 2020. Analysis of the NO2 tropospheric product from S5P TROPOMI for monitoring pollution at city scale. City and Environment Interactions, 8, 100051. doi: 10.1016/j.cacint.2020.100051.

    CrossRef Google Scholar

    Rap A, Scott CE, Spracklen DV, Bellouin N, Forster PM, Carslaw KS, Schmidt A, Mann G. 2013. Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 40(12), 3297–3301. doi: 10.1002/grl.50441.

    CrossRef Google Scholar

    Saw GK, Dey S, Kaushal H, Lal K. 2021. Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, 259, 118514. doi: 10.1016/j.atmosenv.2021.118514.

    CrossRef Google Scholar

    Strasert B, Teh SC, Cohan DS. 2019. Air quality and health benefits from potential coal power plant closures in Texas. Journal of the Air & Waste Management Association, 69(3), 333–350. doi: 10.1080/10962247.2018.1537984.

    CrossRef Google Scholar

    Tian XL, An CJ, Nik-Bakht M, Chen ZK. 2022. Assessment of reductions in NO2 emissions from thermal power plants in Canada based on the analysis of policy, inventory, and satellite data. Journal of Cleaner Production, 341, 130859. doi: 10.1016/j.jclepro.2022.130859.

    CrossRef Google Scholar

    Tirumalachetty S, Kockelman KM, Nichols BG. 2013. Forecasting greenhouse gas emissions from urban regions: Microsimulation of land use and transport patterns in Austin, Texas. Journal of Transport Geography, 33, 220–229. doi: 10.1016/j.jtrangeo.2013.08.002.

    CrossRef Google Scholar

    Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng GN, Xue T, Li M, Hong CP, Lu ZF, Streets DG, Guan DB, He KB. 2018. Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 1, 59–68. doi: 10.1038/s41893-017-0003-y.

    CrossRef Google Scholar

    Uddin MS, Czajkowski KP. 2022. Performance assessment of spatial interpolation methods for the estimation of atmospheric carbon dioxide in the wider geographic extent. Journal of Geovisualization and Spatial Analysis, 6(1), 10. doi: 10.1007/s41651-022-00105-1.

    CrossRef Google Scholar

    van Caneghem J, De Greef J, Block C, Vandecasteele C. 2016. NO x reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study. Journal of Cleaner Production, 112, 4452–4460. doi: 10.1016/j.jclepro.2015.08.068.

    CrossRef Google Scholar

    van Geffen JHGM, Boersma KF, Van Roozendael M, Hendrick F, Mahieu E, De Smedt I, Sneep M, Veefkind JP. 2015. Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window. Atmospheric Measurement Techniques, 8(4), 1685–1699. doi: 10.5194/amt-8-1685-2015.

    CrossRef Google Scholar

    van Geffen JHGM, Eskes HJ, Boersma KF, Maasakkers JD, Veefkind JP. 2019. TROPOMI ATBD of the total and tropospheric NO2 data products. CI-7430-ATBD 1.4. 0. https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products.

    Google Scholar

    Wang CG, Soden BJ, Yang WC, Vecchi GA. 2021. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophysical Research Letters, 48(4), e2020GL091024. doi: 10.1029/2020gl091024.

    CrossRef Google Scholar

    Yu QY, Gu YL, Yang SY, Zhou MJ. 2021. Discovering spatiotemporal patterns and urban facilities determinants of cycling activities in Beijing. Journal of Geovisualization and Spatial Analysis, 5(1), 16. doi: 10.1007/s41651-021-00084-9.

    CrossRef Google Scholar

    Yu ZX, Li X. 2022. The temporal–spatial characteristics of column NO2 concentration and influence factors in Xinjiang of northwestern arid region in China. Atmosphere, 13(10), 1533. doi: 10.3390/atmos13101533.

    CrossRef Google Scholar

    Zhou XL, Gao HL, He Y, Huang G, Bertman SB, Civerolo K, Schwab J. 2003. Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. Geophysical Research Letters, 30(23), 2003GL018620. doi: 10.1029/2003gl018620.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(76) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint