2023 Vol. 6, No. 2
Article Contents

Hua-wen Cao, Qiu-ming Pei, Xiao Yu, Ai-bin Cao, Yong Chen, Hang Liu, Kai Zhang, Xin Liu, Xiang-fei Zhang, 2023. The long-lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals, China Geology, 6, 303-321. doi: 10.31035/cg2022061
Citation: Hua-wen Cao, Qiu-ming Pei, Xiao Yu, Ai-bin Cao, Yong Chen, Hang Liu, Kai Zhang, Xin Liu, Xiang-fei Zhang, 2023. The long-lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals, China Geology, 6, 303-321. doi: 10.31035/cg2022061

The long-lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals

More Information
  • The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years. To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex (GHC), the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies. The dating analyses indicate that the U-Th-Pb ages of zircon, monazite, and xenotime exhibit large variations (38.6‒16.1 Ma), with the weighted average value of the four youngest points is 16.5 ± 0.3 Ma, which indicates that the final stage of crystallization of the melt occurred in the Miocene. The age of the muscovite Ar-Ar inverse isochron is 15.2 ± 0.4 Ma, which is slightly later than the intrusion age, showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma. The εHf(t) values of the Cenozoic anatectic zircons cluster between −12 and −9 with an average of −11.4. The Gyirong pegmatite shows high contents of Si, Al, and K, a high Al saturation index, and low contents of Na, Ca, Fe, Mn, P, Mg, and Ti. Overall, the Gyirong pegmatite is enriched in Rb, Cs, U, K, Th and Pb and depleted in Nb, Ta, Zr, Ti, Eu, Sr, and Ba. The samples show a high 87Sr/86Sr(16 Ma) ratio of ca. 0.762 and a low εNd(16 Ma) value of −16.0. The calculated average initial values of 208Pb/204Pb(16 Ma), 207Pb/204Pb(16 Ma) and 206Pb/204Pb(16 Ma) of the whole rock are 39.72, 15.79 and 19.56, respectively. The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC. This study concludes that the Gyirong pegmatite represents a typical crustal-derived anatectic pegmatite with low metallogenic potential for rare metals. The Gyirong pegmatite records the long-term metamorphism and partial melting process of the GHC, and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma.

  • 加载中
  • Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SL, Bosbyshell H. 2006. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. GSA Bulletin, 118, 39–64. doi: 10.1130/b25659.1.

    CrossRef Google Scholar

    Ayres M, Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology, 139, 249–269. doi: 10.1016/S0009-2541(97)00038-7.

    CrossRef Google Scholar

    Bhandari S, Qin K, Zhou Q, Evans NJ. 2022. Geological, Mineralogical and Geochemical Study of the Aquamarine-Bearing Yamrang Pegmatite, Eastern Nepal with Implications for Exploration Targeting. Minerals, 12, 564. doi: 10.3390/min12050564.

    CrossRef Google Scholar

    Burg JP, Bouilhol P. 2019. Timeline of the South-Tibet-Himalayan belt: the geochronological record of subduction, collision, and underthrusting from zircon and monazite U-Pb ages. Canadian Journal of Earth Sciences, 56, 1318–1332. doi: 10.1139/cjes-2018-0174.

    CrossRef Google Scholar

    Cao HW, Huang Y, Li GM, Zhang LK, Wu JY, Dong L, Dai ZW, Lu L. 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya: tectonic link with Greater India. Geoscience Frontiers, 9, 273–291. doi: 10.1016/j.gsf.2017.04.001.

    CrossRef Google Scholar

    Cao HW, Li GM, Zhang LK, Dong L, Gao K, Dai ZW. 2020a. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications. Sedimentary Geology and Tethyan Geology, 40(2), 31–42 (in Chinese with English abstract).

    Google Scholar

    Cao HW, Li GM, Zhang LK, Zhang XF, Yu X, Chen Y, Lin B, Pei QM, Tang L, Zou H. 2022b. Genesis of Himalayan leucogranite and its potentiality of rare metal mineralization. Sedimentary Geology and Tethyan Geology, 42(2), 189–211 (in Chinese with English abstract).

    Google Scholar

    Cao HW, Li GM, Zhang RQ, Zhang YH, Zhang LK, Dai ZW, Zhang Z, Liang W, Dong SL, Xia XB. 2021. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Research, 92, 72–101. doi: 10.1016/j.gr.2020.12.020.

    CrossRef Google Scholar

    Cao HW, Li GM, Zhang Z, Zhang LK, Dong SL, Xia XB, Liang W, Fu JG, Huang Y, Xiang AP, Qing CS, Dai ZW, Pei QM, Zhang YH. 2020b. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geology Reviews, 119, 103403. doi: 10.1016/j.oregeorev.2020.103403.

    CrossRef Google Scholar

    Cao HW, Pei QM, Santosh M, Li GM, Zhang LK, Zhang XF, Zhang YH, Zou H, Dai ZW, Lin B, Tang L, Yu X. 2022a. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Science Reviews, 234, 104229. doi: 10.1016/j.earscirev.2022.104229.

    CrossRef Google Scholar

    Carosi R, Montomoli C, Rubatto D, Visonà D. 2013. Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova, 25, 478–489. doi: 10.1111/ter.12062.

    CrossRef Google Scholar

    Černý P, Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005–2026. doi: 10.2113/gscanmin.43.6.2005.

    CrossRef Google Scholar

    Chen RX, Zheng YF. 2017. Metamorphic zirconology of continental subduction zones. Journal of Asian Earth Sciences, 145, 149–176. doi: 10.1016/j.jseaes.2017.04.029.

    CrossRef Google Scholar

    Chen S, Zhang B, Zhang J, Wang Y, Li X, Zhang L, Yan Y, Cai F, Yue Y. 2022. Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes: Evidence from a structural, kinematic, and geochronological investigation of the Ramba gneiss dome. Journal of Structural Geology, 155, 104527. doi: 10.1016/j.jsg.2022.104527.

    CrossRef Google Scholar

    Chen SS, Fan WM, Shi RD, Xu JF, Liu YM. 2021. The Tethyan Himalaya igneous province: Early melting products of the Kerguelen mantle plume. Journal of petrology, 62, egab069. doi: 10.1093/petrology/egab069.

    CrossRef Google Scholar

    Corfu F, Hanchar JM, Hoskin PWO, Kinny PD. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500. doi: 10.2113/0530469.

    CrossRef Google Scholar

    Cottle J, Lederer G, Larson K. 2019. The monazite record of pluton assembly: Mapping manaslu using petrochronology. Chemical Geology, 530, 119309. doi: 10.1016/j.chemgeo.2019.119309.

    CrossRef Google Scholar

    Cottle JM, Larson KP, Yakymchuk C. 2018. Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core. Lithos, 312‒313, 57‒71. doi:10.1016/j.lithos.2018.05.003

    Google Scholar

    Debon F, Le Fort P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh:Earth Sciences, 73, 135–149. doi: 10.1017/S0263593300010117.

    CrossRef Google Scholar

    Debon F, Le Fort P. 1988. A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bulletin de Minéralogie, 111, 493–510.

    Google Scholar

    Dill HG. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69, 417–561. doi: 10.1016/j.oregeorev.2015.02.022.

    CrossRef Google Scholar

    Dill HG. 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)-With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92, 205–239. doi: 10.1016/j.oregeorev.2017.11.016.

    CrossRef Google Scholar

    Ding H, Zhang Z, Kohn MJ, Gou Z. 2021. Timescales of partial melting and melt crystallization in the Eastern Himalayan orogen: Insights from zircon petrochronology. Geochemistry, Geophysics, Geosystems, 22, e2020GC009539. doi: 10.1029/2020GC009539.

    Google Scholar

    Ding L, Kapp P, Cai F, Garzione CN, Xiong Z, Wang H, Wang C. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth and and Environment, 3, 652–667. doi: 10.1038/s43017-022-00318-4.

    CrossRef Google Scholar

    Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437. doi: 10.1007/s00410-007-0201-0.

    CrossRef Google Scholar

    Fletcher IR, McNaughton NJ, Aleinikoff JA, Rasmussen B, Kamo SL. 2004. Improved calibration procedures and new standards for U-Pb and Th-Pb dating of Phanerozoic xenotime by ion microprobe. Chemical Geology, 209, 295–314. doi: 10.1016/j.chemgeo.2004.06.015.

    CrossRef Google Scholar

    Frost CD, Frost BR. 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of petrology, 52, 39–53. doi: 10.1093/petrology/egq070.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45, 39–42. doi: 10.1130/g38336.1.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Wang L, Hou KJ, Gao JH, Shang Z. 2016. Timing of different crustal partial melting in the Himalayan orogenic belt and its tectonic implications. Acta Geologica Sinica, 90(11), 3039–3059 (in Chinese with English abstract).

    Google Scholar

    Gao LE, Zeng LS, Zhao LH, Gao JH, Shang Z. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources. China Geology, 4(1), 44–55. doi: 10.31035/cg2021009.

    CrossRef Google Scholar

    Gao LE, Zeng LS. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130, 136–155. doi: 10.1016/j.gca.2014.01.003.

    CrossRef Google Scholar

    Goscombe B, Gray D, Foster DA. 2018. Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Research, 57, 191–265. doi: 10.1016/j.gr.2018.02.002.

    CrossRef Google Scholar

    Gou ZB, Dong X, Wang BD. 2019. Petrogenesis and tectonic implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 30, 525–534. doi: 10.1007/s12583-019-1219-8.

    CrossRef Google Scholar

    Gou ZB, Liu H, Duan YY, Li J, Zhang SZ. 2020. Timescales of partial melting in Yadong region of higher Himalayan crystalline sequence: Constraints from zircon U-Pb geochronology of Naiduila Migmatites. Earth Science, 45(8), 2894–2904 (in Chinese with English abstract).

    Google Scholar

    Gou ZB, Liu H, Li J, Zhang SZ, Zhao XD, Wang SW. 2022. Petrogenesis and geological implications of the Yadong Migmatites, South Tibet. Sedimentary Geology and Tethyan Geology, 42(2), 279–287 (in Chinese with English abstract).

    Google Scholar

    Gou ZB, Zhang ZM, Dong X, Xiang H, Ding HX, Tian ZL, Lei HC. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos, 256‒257, 300‒310. doi: 10.1016/j.lithos.2016.04.009.

    Google Scholar

    Harris N, Ayres M. 1998. The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains. Geological Society, London, Special Publications, 138, 171-182. doi: 10.1144/gsl.Sp.1996.138.01.10.

    Google Scholar

    Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112, 324–350. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2.

    CrossRef Google Scholar

    Hu XM, Garzanti E, Wang JG, Huang WT, An W, Webb A. 2016. The timing of India-Asia collision onset-facts, theories, controversies. Earth-Science Reviews, 160, 264–299. doi: 10.1016/j.earscirev.2016.07.014.

    CrossRef Google Scholar

    Hu Z, Liu Y, Gao S, Liu W, Zhang W, Tong X, Lin L, Zong K, Li M, Chen H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27, 1391–1399. doi: 10.1039/C2JA30078H.

    CrossRef Google Scholar

    Hu Z, Zhang W, Liu Y, Gao S, Li M, Zong K, Chen H, Hu S. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation Quadrupole and multiple collector ICPMS analysis: Application to Lead Isotope analysis. Analytical Chemistry, 87, 1152–1157. doi: 10.1021/ac503749k.

    CrossRef Google Scholar

    Huang Y, Cao HW, Li GM, Brueckner SM, Zhang Z, Dong L, Dai ZW, Lu L, Li YB. 2018. Middle–late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet: Geochronology, petrogenesis and tectonic implications. Lithos, 318‒319, 78‒90. doi: 10.1016/j.lithos.2018.08.002.

    Google Scholar

    Imayama T, Arita K, Fukuyama M, Yi K, Kawabata R. 2019. 1.74 Ga crustal melting after rifting at the northern Indian margin: investigation of mylonitic orthogneisses in the Kathmandu area, central Nepal. International Geology Review, 61, 1207‒1221. doi: 10.1080/00206814.2018.1504329.

    Google Scholar

    Imayama T, Hoshino R, Yi K, Kawabata R. 2022. Eocene to Miocene metamorphic evolution and tectonic implication of the Ilam Nappe in Nepal Himalaya: Constraints from P-T conditions and monazite petrochronology. Journal of Asian Earth Sciences, 105276. doi: 10.1016/j.jseaes.2022.105276.

    Google Scholar

    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63, 489–508. doi: 10.1016/s0016-7037(99)00027-7.

    CrossRef Google Scholar

    Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211, 47–69. doi: 10.1016/j.chemgeo.2004.06.017.

    CrossRef Google Scholar

    Kang DY, Zhang ZM, Palin RM, Tian ZL, Dong X. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan syntaxis: Implications for the tectonic evolution of large hot Orogens. Journal of Geophysical Research:Solid Earth, 125, e2019JB019119. doi: 10.1029/2019jb019119.

    CrossRef Google Scholar

    Kellett DA, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapidultra-rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32, 252–270. doi: 10.1002/tect.20014.

    CrossRef Google Scholar

    Khanal GP, Wang JM, Wu FY, Wang JG, Yang L. 2020. In-sequence buoyancy extrusion of the Himalayan Metamorphic Core, central Nepal: Constraints from monazite petrochronology and thermobarometry. Journal of Asian Earth Sciences, 199, 104406. doi: 10.1016/j.jseaes.2020.104406.

    CrossRef Google Scholar

    Knoll T, Huet B, Schuster R, Mali H, Ntaflos T, Hauzenberger C. 2023. Lithium pegmatite of anatectic origin–A case study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): geological data and geochemical model. Ore Geology Reviews, 105298. doi: 10.1016/j.oregeorev.2023.105298.

    Google Scholar

    Kohn MJ. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42, 381–419. doi: 10.1146/annurev-earth-060313-055005.

    CrossRef Google Scholar

    Koppers AAP. 2002. ArArCALC—software for 40Ar/39Ar age calculations. Computers and and Geosciences, 28, 605–619. doi: 10.1016/S0098-3004(01)00095-4.

    CrossRef Google Scholar

    Larson KP, Cottle JM, Camacho A, Piercey S, Grujic D. 2022. Miocene anatexis, cooling and exhumation in the Khumbu Himal, Nepal. International Geology Review., 64(4), 12008–20336. doi: 10.1080/00206814.2021.1969524.

    CrossRef Google Scholar

    Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 39–57. doi: 10.1016/0040-1951(87)90248-4.

    CrossRef Google Scholar

    Lederer GW, Cottle JM, Jessup MJ, Langille JM, Ahmad T. 2013. Timescales of partial melting in the Himalayan middle crust: Insight from the Leo Pargil dome, northwest India. Contributions to Mineralogy and Petrology, 166, 1415–1441. doi: 10.1007/s00410-013-0935-9.

    CrossRef Google Scholar

    Leloup PH, Liu X, Mahéo G, Paquette JL, Arnaud N, Aubray A, Liu X. 2015. New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): Implications for extrusion models. Geological Society, London, Special Publications, 412, 131‒175. doi: 10.1144/sp412.11.

    Google Scholar

    Li GW, Kohn B, Sandiford M, Ma ZL, Xu ZQ. 2018. Post-collisional exhumation of the Indus-Yarlung suture zone and Northern Tethyan Himalaya, Saga, SW Tibet. Gondwana Research. 64, 1‒10. doi: 10.1016/j.gr.2018.06.006.

    Google Scholar

    Li M, Wang A, Liu C, Wang GC, Li T, Garver JI. 2013. Neogene exhumation of the Greater Himalaya Slab in Gyirong area, Tibet, constrained by fission track geochronology. Geological Bulletin of China, 2013,32(1), 86–92 (in Chinese with English abstract).

    Google Scholar

    Li WY, Zhang ZW, Gao YB, Hong J, Chen B, Zhang ZB. 2022b. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium. Geology in China, 49(5), 1385–1407 (in Chinese with English abstract).

    Google Scholar

    Li X, Zheng YC, Yang ZS, Hou ZQ, Wu CD, Xu PY, Wang L. 2022a. Discovery of Miocene pegmatite type Be-Nb-Ta(-Rb) mineralization in the Yangbajain of Central Lhasa subterrane, Tibet. China Geology, 5(4), 768–770. doi: 10.31035/cg2022037.

    CrossRef Google Scholar

    Li Y, Wang W, Du XF, Chen ZL, Ma HD, Qiu L, Liu W, Zhang YF, Huo HL. 2022c. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the West Kunlun orogenic belt and its limitation to regional mineralization. Geology in China, 49(6), 2031–2033 (in Chinese with English abstract).

    Google Scholar

    Lin C, Zhang J, Wang X, Putthapiban P, Zhang B, Liu K, Huang T. 2020. Late triassic back-arc spreading and initial opening of the Neo-Tethyan Ocean in the northern margin of Gondwana: Evidences from Late Triassic BABB-type basalts in the Tethyan Himalaya, Southern Tibet. Lithos, 358‒359, 105408. doi: 10.1016/j.lithos.2020.105408.

    Google Scholar

    Linnen RL, Van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280. doi: 10.2113/gselements.8.4.275.

    CrossRef Google Scholar

    Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L, Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358‒359, 105421. doi: 10.1016/j.lithos.2020.105421

    Google Scholar

    Liu L, Zhu DC, Wang Q, Cawood PA, Stockli DF, Stockli LD, Lin C, Zhang JJ, Zhang LL, Zhao ZD. 2022. Leucogranite records multiple collisional orogenies. Geophysical Research Letters, 49, e2021GL096817. doi: 10.1029/2021GL096817.

    CrossRef Google Scholar

    Liu YS, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55, 1535–1546. doi: 10.1007/s11434-010-3052-4.

    CrossRef Google Scholar

    Liu ZC, Wu FY, Guo CL, Zhao ZF, Yang JH, Sun JF. 2011. In situ U-Pb dating of xenotime by laser ablation (LA)‒ICP‒MS. Chinese Science Bulletin, 56, 2948–2956. doi: 10.1007/s11434-011-4657-y.

    CrossRef Google Scholar

    London D, Kontak DJ. 2012. Granitic Pegmatites: Scientific wonders and economic Bonanzas. Elements, 8, 257–261. doi: 10.2113/gselements.8.4.257.

    CrossRef Google Scholar

    London D, Morgan GB. 2012. The pegmatite puzzle. Elements, 8, 263–268. doi: 10.2113/gselements.8.4.263.

    CrossRef Google Scholar

    London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101, 349–383. doi: 10.1016/j.oregeorev.2018.04.020.

    CrossRef Google Scholar

    Ludwig KR. 2012. User’s Manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 1‒66.

    Google Scholar

    Luo T, Hu Z, Zhang W, Günther D, Liu Y, Zong K, Hu S. 2018a. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193 nm excimer LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 33, 1655–1663. doi: 10.1039/C8JA00163D.

    CrossRef Google Scholar

    Luo T, Hu Z, Zhang W, Liu Y, Zong K, Zhou L, Zhang J, Hu S. 2018b. Water vapor-assisted “Universal” nonmatrix-matched analytical method for the in situ U-Pb sating of Zircon, Monazite, Titanite and Xenotime by laser ablation-inductively coupled plasma mass spectrometry. Analytical Chemistry, 90, 9016–9024. doi: 10.1021/acs.analchem.8b01231.

    CrossRef Google Scholar

    Luo T, Zhao H, Li Q, Li Y, Zhang W, Guo J, Liu Y, Zhang J, Hu Z. 2020. Non-matrix-matched determination of Th-Pb ages in zircon, monazite and xenotime by laser Ablation-inductively coupled plasma-mass apectrometry. Geostandards and Geoanalytical Research, 44, 653–668. doi: 10.1111/ggr.12356.

    CrossRef Google Scholar

    Ma ZN, Han ZP, Li YL, Bi WJ, Xu TK, Xiao SQ. 2022. Exhumation history of the Kampa dome in the southern Tibet: Evidence from low temperature thermochronology. Sedimentary Geology and Tethyan Geology, 42(2), 300–309 (in Chinese with English abstract).

    Google Scholar

    Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.

    CrossRef Google Scholar

    Martin AJ. 2017. A review of Himalayan stratigraphy, magmatism, and structure. Gondwana Research, 49, 42–80. doi: 10.1016/j.gr.2017.04.031.

    CrossRef Google Scholar

    McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120, 223–253. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Metcalfe I. 2021. Multiple Tethyan Ocean basins and orogenic belts in Asia. Gondwana Research, 100, 87–130. doi: 10.1016/j.gr.2021.01.012.

    CrossRef Google Scholar

    Montel JM. 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110, 127–146. doi: 10.1016/0009-2541(93)90250-M.

    CrossRef Google Scholar

    Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS, Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255, 231–235. doi: 10.1016/j.chemgeo.2008.06.040.

    CrossRef Google Scholar

    Mottram CM, Cottle J, Kylander-Clark A. 2019. Campaign-style U-Pb titanite petrochronology; along-strike variations in timing of metamorphism in the Himalayan Metamorphic Core. Geoscience Frontiers, 10, 827–847. doi: 10.1016/j.gsf.2018.09.007.

    CrossRef Google Scholar

    Müller A, Romer RL, Pedersen RB. 2017. The sveconorwegian pegmatite province-thousands of pegmatites without parental granites. The Canadian Mineralogist, 55, 283–315. doi: 10.3749/canmin.1600075.

    CrossRef Google Scholar

    Müller A, Simmons W, Beurlen H, Thomas R, Ihlen PM, Wise M, Roda-Robles E, Neiva AMR, Zagorsky V. 2022. A proposed new mineralogical classification system for granitic pegmatites Part I: History and the need for a new classification. The Canadian Mineralogist, 60, 203–227. doi: 10.3749/canmin.1700088.

    CrossRef Google Scholar

    Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53, 3–14. doi: 10.1016/j.jseaes.2011.12.018.

    CrossRef Google Scholar

    Pan GT, Wang LQ, Yin FG, Geng QR, Li GM, Zhu DC. 2022. Researches on geological tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future. Sedimentary Geology and Tethyan Geology, 42(2), 151–175 (in Chinese with English abstract).

    Google Scholar

    Pei QM, Ma SB, Li CH, Liu F, Zhang YH, Xiao Y, Wang SM, Wu JF, Cao HW. 2023. In-situ boron isotope and chemical composition of tourmaline in the Gyirong pegmatite, southern Tibet: Implications for petrogenesis and magma source. Frontiers in Earth Science, 10, 1037727. doi: 10.3389/feart.2022.1037727.

    CrossRef Google Scholar

    Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261–295. doi: 10.2138/rmg.2017.83.09.

    CrossRef Google Scholar

    Rudnick RL, Gao S. 2014. 4.1−Composition of the Continental Crust, In: Holland HD, Turekian KK. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 1‒51. doi: 10.1016/B978-0-08-095975-7.00301-6.

    Google Scholar

    Sang HQ, Wang F, He HY, Wang YL, Yang LK, Zhu RX. 2006. Intercalibration of ZBH-25 biotite reference material untilized for K-Ar and 40Ar-39Ar age determination. Acta Petrologica Sinica, 22(12), 3059–3078.

    Google Scholar

    Searle MP, Crawford MB, Rex AJ. 1992. Field relations, geochemistry, origin and emplacement of the Baltoro granite, Central Karakoram. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83, 519–538. doi: 10.1017/S0263593300005861.

    CrossRef Google Scholar

    Searle MP, Treloar PJ. 2019. An introduction to Himalayan tectonics: A modern synthesis. Geological Society, London, Special Publications, 483, 1‒17. doi: 10.1144/sp483-2019-20.

    Google Scholar

    Searle MP. 2019. Timing of subduction initiation, arc formation, ophiolite obduction and India-Asia collision in the Himalaya. Geological Society, London, Special Publications, 483, 19‒37. doi: 10.1144/sp483.8.

    Google Scholar

    Shellnutt JG. 2018. The Panjal Traps, In: Sensarma, S, Storey BC. (Eds.), Large Igneous Provinces from Gondwana and Adjacent Regions. Geological Society, London, Special Publications, 59‒86. doi: 10.1144/sp463.4.

    Google Scholar

    Shen T, Wang G, Leloup PH, van der Beek P, Bernet M, Cao K, Wang A, Liu C, Zhang K. 2016. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission-track thermochronology and detrital zircon U-Pb geochronology in the Gyirong basin area, southern Tibet. Tectonics, 35, 1713–1734. doi: 10.1002/2016TC004149.

    CrossRef Google Scholar

    Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ. 2008. Plešovice zircon-A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. doi: 10.1016/j.chemgeo.2007.11.005.

    CrossRef Google Scholar

    Štípská P, Závada P, Collett S, Kylander Clark ARC, Hacker BR, Tabaud AS, Racek M. 2020. Eocene migmatite formation and diachronous burial revealed by petrochronology in NW Himalaya, Zanskar. Journal of Metamorphic Geology, 38, 655–691. doi: 10.1111/jmg.12534.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313‒345. doi: 10.1144/GSL.SP.1989.042.01.19

    Google Scholar

    Tian YH, Zeng LS, Gao LE, Wang YY, Hou KJ. 2021. Late Permian felsic magmatism along the Tethyan Himalaya, South Tibet and tectonic implications. Acta Petrologica Sinica, 37(10), 3035–3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.05.

    CrossRef Google Scholar

    Tomascak PB, Krogstad EJ, Walker JR. 1996. U-Pb monazite geochronology of granitic rocks from Maine: Implications for Late Paleozoic tectonics in the Northern Appalachians. The Journal of Geology, 104, 185–195. doi: 10.1086/629813.

    CrossRef Google Scholar

    Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. doi: 10.1016/j.gsf.2018.04.001.

    CrossRef Google Scholar

    Wang JM, Lanari P, Wu FY, Zhang JJ, Khanal GP, Yang L. 2021. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 558, 116760. doi: 10.1016/j.jpgl.2021.116760.

    CrossRef Google Scholar

    Wang JM, Rubatto D, Zhang JJ. 2015. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-sequence thrusting and its implications. Journal of Petrology, 56, 1677–1702. doi: 10.1093/petrology/egv050.

    CrossRef Google Scholar

    Wang JM, Wu FY, Rubatto D, Liu SR, Zhang JJ, Liu XC, Yang L. 2017. Monazite behaviour during isothermal decompression in pelitic granulites: A case study from Dinggye, Tibetan Himalaya. Contributions to Mineralogy and Petrology, 172, 81. doi: 10.1007/s00410-017-1400-y.

    CrossRef Google Scholar

    Wang JM, Wu FY, Zhang JJ, Gautam K, Yang L. 2022. The Himalayan collisional orogeny: a metamorphic perspective. Acta Geologica Sinica, 96(9), 3128–3157 (in Chinese with English abstract).

    Google Scholar

    Wang JM, Zhang JJ, Liu K, Zhang B, Wang XX, Rai S, Scheltens M. 2016. Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: Constraints from P-T paths and geochronology. Tectonophysics, 679, 41–60. doi: 10.1016/j.tecto.2016.04.035.

    CrossRef Google Scholar

    Wang XX, Zhang JJ, Liu J, Yan SY, Wang JM. 2013. Middle-Miocene transformation of tectonic regime in the Himalayan orogen. Chinese Science Bulletin, 58, 108–117. doi: 10.1007/s11434-012-5414-6.

    CrossRef Google Scholar

    Wang XX, Zhang JJ, Yang XY. 2017. Geochemical characteristics of the Leucogranites from Gyirong, South Tibet: formation mechanism and tectonic implications. Geotectonica et Metallogenia, 41(2), 354–368.

    Google Scholar

    Watson EB, Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304. doi: 10.1016/0012-821X(83)90211-X.

    CrossRef Google Scholar

    Webb AAG, Guo H, Clift PD, Husson L, Müller T, Costantino D, Yin A, Xu Z, Cao H, Wang Q. 2017. The Himalaya in 3D: Slab dynamics controlled mountain building and monsoon intensification. Lithosphere, 9, 637–651. doi: 10.1130/l636.1.

    CrossRef Google Scholar

    Weinberg RF. 2016. Himalayan leucogranites and migmatites: Nature, timing and duration of anatexis. Journal of Metamorphic Geology, 34, 821–843. doi: 10.1111/jmg.12204.

    CrossRef Google Scholar

    Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza M, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39. doi: 10.1111/j.1751-908X.2004.tb01041.x.

    CrossRef Google Scholar

    Wise MA, Müller A, Simmons WB. 2022. A proposed new mineralogical classification system for granitic pegmatites. The Canadian Mineralogist, 60, 229–248. doi: 10.3749/canmin.1800006.

    CrossRef Google Scholar

    Wolff R, Hölzer K, Hetzel R, Xu Q, Dunkl I, Anczkiewicz AA, Li Z. 2022. Spatially focused erosion in the High Himalaya and the geometry of the Main Himalayan Thrust in Central Nepal (85°E) from thermo-kinematic modeling of thermochronological data in the Gyirong region (southern China). Tectonophysics, 229378. doi: 10.1016/j.tecto.2022.229378.

    Google Scholar

    Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 209, 121–135. doi: 10.1016/j.chemgeo.2004.04.026.

    CrossRef Google Scholar

    Wu FY, Li XH, Zheng YF, Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2), 185–220.

    Google Scholar

    Wu FY, Liu XC, Ji WQ. Wang JM, Yang L. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60, 1201–1219. doi: 10.1007/s11430-016-5139-1.

    CrossRef Google Scholar

    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP, He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352‒353, 105319. doi: 10.1016/j.lithos.2019.105319.

    Google Scholar

    Wu FY, Liu ZC, Liu XC, Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1), 1–36 (in Chinese with English abstract).

    Google Scholar

    Xu B, Hou ZQ, Griffin WL, Lu Y, Belousova E, Xu JF, O'Reilly SY. 2021a. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106, 656–661. doi: 10.2138/am-2021-7714.

    CrossRef Google Scholar

    Xu B, Hou ZQ, Griffin WL, Zheng YC, Wang T, Guo Z, Hou J, Santosh M, O'Reilly SY. 2021b. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth-Science Reviews, 214, 103472. doi: 10.1016/j.earscirev.2020.103472.

    CrossRef Google Scholar

    Xu B, Hou ZQ, Griffin WL, Yu JX, Long T, Zhao Y, Wang T, Fu B, Belousova E, O'Reilly SY. 2022. Apatite halogens and Sr-O and zircon Hf-O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology, 605, 120924. doi: 10.1016/j.chemgeo.2022.120924.

    CrossRef Google Scholar

    Yang T, Ma Y, Bian W, Jin J, Zhang S, Wu H, Li H, Yang Z, Ding J. 2015. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision. Earth and Planetary Science Letters, 428, 120–133. doi: 10.1016/j.jpgl.2015.07.040.

    CrossRef Google Scholar

    Yang XY, Zhang JJ, Qi GW, Wang DC, Guo L, Li PY, Liu J. 2009. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment system. Science in China Series D:Earth Sciences, 52, 1046–1058. doi: 10.1007/s11430-009-0111-2.

    CrossRef Google Scholar

    Yao CY, Wang TG, Ni P, Yao ZY, Guo WM, Zhu YP, Wang W. 2021. Metallogenic types, characteristics and research progress of Nb-Ta deposits. Geology in China, 48(6), 1748–1758 (in Chinese with English abstract).

    Google Scholar

    Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76, 1–131. doi: 10.1016/j.earscirev.2005.05.004.

    CrossRef Google Scholar

    Yu SM, Ma XD, Hu YC, Chen W, Liu QP, Song Y, Tang JX. 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geology, 5(1), 84–95. doi: 10.31035/cg2021045.

    CrossRef Google Scholar

    Zeng LS, Gao LE, Tang SH, Hou KJ, Guo CL, Hu GY. 2015. Eocene magmatism in the Tethyan Himalaya, southern Tibet. Geological Society, London, Special Publications, 412, 287‒316. doi: 10.1144/SP412.8.

    Google Scholar

    Zeng LS, Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5), 1420–1444 (in Chinese with English abstract).

    Google Scholar

    Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY, Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21, 939–960. doi: 10.1016/j.gr.2011.11.004.

    CrossRef Google Scholar

    Zhang LK, Li GM, Santosh M, Cao HW, Dong SL, Zhang Z, Fu JG, Xia XB. Huang, Y., Liang, W., Zhang, S. T., 2019. Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin: A case study and overview. Geological Journal, 54, 2545‒2565. doi: 10.1002/gj.3311.

    Google Scholar

    Zhang Z, Li GM, Zhang LK, Cao HW, Yang C, Huang Y, Liang W, Fu JG, Dong SL, Xia XB, Dai ZW. 2021. Neoproterozoic bimodal magmatism in the eastern Himalayan orogen: Tectonic implications for the Rodinia supercontinent evolution. Gondwana Research, 94, 87–105. doi: 10.1016/j.gr.2021.01.016.

    CrossRef Google Scholar

    Zhang Z, Li GM, Zhang LK. 2022. Exploration and research progresses of rare metals in Himalayan belt, Tibet. Sedimentary Geology and Tethyan Geology, 42(2), 176–188 (in Chinese with English abstract).

    Google Scholar

    Zhang ZM, Ding HX, Palin RM, Dong X, Tian ZL, Kong DY, Jiang YY, Qin SK, Li WT. 2022. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104, 4–22. doi: 10.1016/j.gr.2021.05.011.

    CrossRef Google Scholar

    Zhang ZM, Dong X, Ding HX, Tian ZL, Xiang H. 2017. Metamorphism and partial melting of the Himalayan orogen. Acta Petrologica Sinica, 33(8), 2313–2341 (in Chinese with English abstract).

    Google Scholar

    Zhang ZM, Kang DY, Ding HX, Tian ZZ, Dong X, Qin SK, Mu HC, Li MM. 2018. Partial melting of Himalayan orogen and formation mechanism of leucogranites. Earth Science, 43(1), 82–98 (in Chinese with English abstract).

    Google Scholar

    Zhang ZM, Xiang H, Dong X, Ding HX, He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212–215, 1‒15. doi: 10.1016/j.lithos.2014.10.009.

    Google Scholar

    Zhang ZM, Xiang H, Dong X, Li WC, Ding HX, Gou ZB, Tian ZL. 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41, 173–187. doi: 10.1016/j.gr.2015.03.002.

    CrossRef Google Scholar

    Zhao ZB, Li C, Ma XX. 2021. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma? China Geology, 4(1), 32‒43. doi: 10.31035/cg2021013.

    Google Scholar

    Zhao ZH, Chen HY, Han JS. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1), 1–26 (in Chinese with English abstract).

    Google Scholar

    Zhao ZH, Yan S. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatites. Geotectonica et Metallogenia, 47(1), 1–41 (in Chinese with English abstract).

    Google Scholar

    Zhou W, Xie L, Wang RC, Wu FY, Tian EN, Liu C, Liu XC. 2022. The study on the micas in the Gyirong leucogranite pegmatite from Himalaya: Implications for the lithium enrichment. Acta Petrologica Sinica, 38(7), 2153–2173 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.20.

    CrossRef Google Scholar

    Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu Y, Song B, Yang YH. 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37, 583–586. doi: 10.1130/g30001a.1.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(572) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint