2023 Vol. 6, No. 4
Article Contents

Meng Dai, Guang-sheng Yan, Yong-sheng Li, Wen-bin Jia, Fan-yu Qi, Xing Ju, 2023. Melt extraction and mineralization: A case study from the Shuangjianzishan supergiant Ag-Pb-Zn deposit (208 Mt), Inner Mongolia, NE China, China Geology, 6, 623-645. doi: 10.31035/cg2022044
Citation: Meng Dai, Guang-sheng Yan, Yong-sheng Li, Wen-bin Jia, Fan-yu Qi, Xing Ju, 2023. Melt extraction and mineralization: A case study from the Shuangjianzishan supergiant Ag-Pb-Zn deposit (208 Mt), Inner Mongolia, NE China, China Geology, 6, 623-645. doi: 10.31035/cg2022044

Melt extraction and mineralization: A case study from the Shuangjianzishan supergiant Ag-Pb-Zn deposit (208 Mt), Inner Mongolia, NE China

More Information
  • The supergiant Shuangjianzishan (SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range (SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magmatic system, and the mineralization age was consistent with the diagenetic age. However, the relationship between granitic magmatism and mineralization is still unclear in the SJZ. In this study, C-H-O-He-Ar and in-situ S-Pb isotope analyses were conducted to determine the sources of ore-forming fluids and metals, which were combined with geochemistry data of SJZ granitoids from previous studies to constrain the relationship between the magmatism and the mineralization. The C-H-O-He-Ar-S-Pb isotopic compositions suggested the SJZ ore-forming material and fluids were derived from a magmatic source, which has mixed a small amount of mantle-derived materials. In addition, the disseminated sulfide from the syenogranite has comparable S-Pb isotopic composition with the sulfide minerals from ore veins, suggesting that the generation of the SJZ ore-forming fluids has a close relationship with the syenogranite magmatism. Combining with the geochemical characters of the syenogranite, the authors proposed that the mantle-derived fingerprint of the SJZ ore-forming fluid might be caused by the parent magma of the syenogranite, which was derived from partial melting of the juvenile lower crust, and underwent the residual melts segregated from a crystal mush in the shallow magma reservoir. The extraction of the syenogranite parent magma further concentrated the fertilized fluids, which was crucial to mineralization of the SJZ Ag-Pb-Zn deposit.

  • 加载中
  • Andrew A, Godwin CI, Sinclair AJ. 1984. Mixing line isochrons: A new interpretation of galena lead isotope data from Southeastern British Columbia. Economic Geology, 79, 919–932. doi: 10.2113/gsecongeo.79.5.919.

    CrossRef Google Scholar

    Baker T, Achterberg VE, Ryan GC, Lang RJ. 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geological Society of America, 32, 117–120.

    Google Scholar

    Bao ZA, Yuan WT, Yuan HL, Liu X, Chen KY, Zong CL. 2016a. Non-matrix-matched determination of lead isotope ratios in ancient bronze artifacts by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 402, 12–19. doi: 10.1016/j.ijms.2016.03.001.

    CrossRef Google Scholar

    Bao ZA, Yuan HL, Zong CL, Liu Y, Chen KY, Zhang YL. 2016b. simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 31, 1012–1022. doi: 10.1039/C5JA00410A.

    CrossRef Google Scholar

    Barton PB, Bethke PM. 1987. Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist, 72 (5‒6), 451‒467.

    Google Scholar

    Beane R, Wiebe RA. 2012. Origin of quartz clusters in Vinalhaven granite and porphyry, coastal Maine. Contributions to Mineralogy and Petrology, 163(6), 1069–1082. doi: 10.1007/s00410-011-0717-1.

    CrossRef Google Scholar

    Cai HA, Yang ZA, Yin ZW, Xiao WJ, Li YY. 2021. Metallogenic regularity and exploration direction of Shuangjianzishan Ag-Pb-Zn deposit in Inner Mongolia, China. Mineral Exploration, 7(12), 1576–1581 (in Chinese with English abstract).

    Google Scholar

    Clayton RN, Mayeda TK. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52. doi: 10.1016/0016-7037(63)90071-1.

    CrossRef Google Scholar

    Chen L, Chen KY, Bao ZA, Liang P, Sun TT, Yuan HL. 2016. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32, 107–116. doi: 10.1039/c6ja00270f.

    CrossRef Google Scholar

    Chiaradia M, Konopelko D, Seltmann R, Cliff AR. 2006. Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. Mineralium Deposita, 41(5), 411–428. doi: 10.1007/s00126-006-0070-x.

    CrossRef Google Scholar

    Clark I, Fritz P. 1997. Environmental Isotopes in Hydrogeology. New York, Lewis Publishers, 328.

    Google Scholar

    Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F. 2009. Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, 4761–4791. doi: 10.1016/j.gca.2009.05.045.

    CrossRef Google Scholar

    Cooke DR, Deyell CL, Waters PJ, Gonzales RI, Zaw K. 2011. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5), 801–818. doi: 10.2113/gsecongeo.100.5.801.

    CrossRef Google Scholar

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465), 702–1703.

    Google Scholar

    Dai M, Yan GS, Liu C, Deng JF, Li YS, Jia WB, Lai CK. 2019. Southward subduction of the Mongolia–Okhostk Ocean: Insights from Early–Middle Triassic intrusive rocks from the Jiawula–Tsagenbulagen area in NE China. Geological Journal, 55(1), 1–27. doi: 10.1002/gj.3435.

    CrossRef Google Scholar

    Dai M, Yan GS, Li YS, Gong, FY, Jia WB. 2022. The origin of microgranular enclaves in the Early Cretaceous Shuangjianzishan granites in southern Great Hinggan Range, NE China. Geological Journal. doi: 10.1002/gj.4432.

    Google Scholar

    Doe BR, Zartman RE. 1979. Plumbotectonics, the phanerozoic. Geochemistry of Hydrothermal Ore deposits. New York, Wiley Interscience Publications, 22–70.

    Google Scholar

    Eldridge CS, Bourcier WL, Ohmoto H, Barnes HL. 1988. Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Economic Geology, 83(5), 978–989. doi: 10.2113/gsecongeo.83.5.978.

    CrossRef Google Scholar

    Jahn BM, Wu F, Chen B. 2000. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Geological Society of America, Special Papers, 350, 181–193.

    Google Scholar

    Jiang B, Wang DH, Chen YC, Zhang T, Pu XL, Ma WW, Wang Y, Wu G, Wu LW, Zhang T, Li XJ, Yan J, Zuo YS, Sun HJ, Li ZY. 2022. Classification, metallogenesis and exploration of silver deposits in Daxing’anling of Inner Mongolia and its adjacent areas. China Geology. doi: 10.31035/cg2022005.

    Google Scholar

    Jiang SH, Nie FJ, Liu YF, Yun, F. 2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Mineral Deposits, 29(1), 101–112 (in Chinese with English abstract).

    Google Scholar

    Jiang SH, Nie FJ, Bai DM, Niu SY, Wang BD, Liu YF, Liu Y. 2011a. Study on the lead isotopic features of the Baiyinnuoer Pb-Zn deposit in Inner Mongolia. Journal of Earch Sciences and Environment, 33, 230–238 (in Chinese with English abstract).

    Google Scholar

    Jiang SH, Nie FJ, Bai DM, Liu YF, Liu Y. 2011b. Geochronology evidence for Indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia. Mineral Deposits, 30, 787–798 (in Chinese with English abstract).

    Google Scholar

    Jiang SH, Chen CL, Bagas L, Liu Y, Han N, Kang H, Wang ZH. 2017. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages. Journal of Asian Earth Sciences, 144, 339–367. doi: 10.1016/j.jseaes.2016.12.042.

    CrossRef Google Scholar

    Kendrick MA, Burgess, R, Pattrick, RAD, Turner, G. 2001. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochimica et Cosmochimica Acta, 65, 2651–2668. doi: 10.1016/S0016-7037(01)00618-4.

    CrossRef Google Scholar

    Kendrick MA, Burnard P. 2013. Noble gases and halogens in fluid inclusions: A journey through the Earth’s Crust. The Noble Gases as Geochemical Tracers, 319–369.

    Google Scholar

    Kuang YS., Zheng GR, Lu MJ, Liu YL, Zhang SJ, Li Y, Chen WJ. 2014. Basic characteristics of Shuangjianzishan sliver polymetallic deposit in Chifeng City, Inner Mongolia. Mineral Deposits, 33(4), 847–856 (in Chinese with English abstract).

    Google Scholar

    Li JF, Wang KY, Quan HY, Sun FY, Zhao LS, Zhang XB. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb-Zn deposit in the southern Da Xing’an Mountains. Acta Petrologica Sinica, 32(5), 1529–1542.

    Google Scholar

    Li JY, Qian Y, Tekoumc L, Zhao CJ, Sun JL, Zheng T, Sun FY, Shen YJ. 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1), 127–143. doi: 10.1007/s12583-020-1372-0.

    CrossRef Google Scholar

    Liu C, Deng JF, Xu LQ, Zhang Y, Zhao HD, Kong WQ, Li N, Luo ZH, Bai LB, Zhao, GC, Su SG. 2011. A preliminary frame of magma- tectonic-Mo metallogenic events of Mesozoic era in Da Hingganmountains and Xiao Hinggan mountains areas. Earth Science Fronters, 18, 166–178 (in Chinese with English abstract).

    Google Scholar

    Liu HB, Jin GS, LI JJ, Han J, Zhang JF, Zhang J, Zhong FW, Guo DQ. 2013. Determination of stable isotope composition in uranium geological samples. World Nuclear Geoscience, 30(3), 174–179 (in Chinese with English abstract).

    Google Scholar

    Liu YF, Jiang S, Bagas L. 2016. The genesis of metal zonation in theWeilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallowpart of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Review, 75, 150–173. doi: 10.1016/j.oregeorev.2015.12.006.

    CrossRef Google Scholar

    Liu YF, Jiang S, Bagas L, Han N, Chen CL, Kang H. 2017. Isotopic (C-O-S) geochemistry and Re-Os geochronology of the Haobugao Zn-Fe deposit in Inner Mongolia, NE China. Ore Geology Review, 82, 130–147. doi: 10.1016/j.oregeorev.2016.11.024.

    CrossRef Google Scholar

    Liu LJ, Zhou, TF, Zhang DY, Yuan F, Liu G. X, Zhao ZC, Sun JD, White N. 2018. S isotopic geochemistry, zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Xing’an Range, NE China. Ore Geology Review, 93, 168–180. doi: 10.1016/j.oregeorev.2017.12.008.

    CrossRef Google Scholar

    Luo ZH, Lu XX, Xu JY, Liu C and Li DD. 2010. Petrographic indicators of the ore-bearing intrusions. Acta Petrologica Sinica, 26(8): 2247–2254 (in Chinese with English abstrac). doi: CNKI:SUN:YSXB.0.2010-08-003.

    Google Scholar

    Luo ZH, Lu XX, Liu C, Li DD, Yang ZZ, Wen SB. 2011. On failing of the magmatic hydrothermal metallogenic theory: The causes and new departure. Journal of Jilin University (Earth Science Edition), 41(1), 1–11 (in Chinese with English abstract).

    Google Scholar

    Luo ZH, Zhou JL, Hei HX, Liu C, Su SG. 2014. Post ‒ supereruption ‒ superintrusion) metallogenesis. Acta Petrologica Sinica, 30(11), 3131–3154 (in Chinese with English abstract).

    Google Scholar

    Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ, Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologic Sinica, 21, 169–188 (in Chinese with English abstract).

    Google Scholar

    Mamyrin BA, Tolstikhin LN. 1984. Helium isotopes in nature developments in geochemistry. Amsterdam, Elsevier press, 1–273.

    Google Scholar

    Mei W, Lv XB, Liu Z, Tang RK, Ai ZL, Wang XD, Cisse M. 2015. Geochronological and geochemical constraints on the ore-related granites in Huanggang deposit, Southern Great Xing'an Range, NE China and its tectonic significance. Geosciences Journal, 19(1), 53–67. doi: 10.1007/s12303-014-0021-y.

    CrossRef Google Scholar

    Meinert LD, Dipple GM, Nicolescu S. 2005, World skarn deposits. Economic Geology 100th Anniversary Volume, 299–336.

    Google Scholar

    Nie FJ, Jiang SH, Zhang Y, Bai DM, Hu P, Zhao YY, Zhang WY, Liu Y. 2007. Metallogenic Studies and Prospecting Orientation in Central and Eastern Segments along China-Mongolia Border. Beijing, Geological Publishing House, 574 (in Chinese with English abstract).

    Google Scholar

    Niu SY, Sun AQ, Guo LJ, Wang BD, Hu HB, Jian M. 2008. Ore-control structures and prospecting for the Baiyinnuoer Pb-Zn deposit in the Da Hinggan range. Geotectonica Et Metallogenia, 32, 72–80 (in Chinese with English abstract).

    Google Scholar

    Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology. 67 (5), 551–578. doi: 10.2113/gsecongeo.67.5.551.

    CrossRef Google Scholar

    Ohmoto H, Rye R. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed. ), Geochemistry of Hydrothermal Ore Deposits. New York, John Wiley and Sons Inc press, 509–567.

    Google Scholar

    Ouyang HG, Mao JW, Santosh M, Wu Y, Hou L, Wang XF. 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geology Review, 56, 503–515. doi: 10.1016/j.oregeorev.2013.06.015.

    CrossRef Google Scholar

    Ouyang HG, Mao JW, Zhou ZH, Su HM. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Research, 27, 1153–1172. doi: 10.1016/j.gr.2014.08.010.

    CrossRef Google Scholar

    Rollinson H. 1993. Using geochemical data: London. Longman, 352.

    Google Scholar

    Ruan BX, Lv XB, Yang W, Liu ST, Yu YM, Wu CM. 2015. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China: Implications for tectonic setting and metallogeny. Ore Geology Reviews, 121–137. doi: 10.1016/j.oregeorev.2015.05.004.

    CrossRef Google Scholar

    Seal RR. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61, 633–677. doi: 10.2138/rmg.2006.61.12.

    CrossRef Google Scholar

    Sengör AMC, Natal’in BA. 1996. Palaeotectonics of Asia. Fragments of A Synthesis. In: Yin A, Harrison M (Eds. ), The Tectonic Evolution of Asia. Rubey Colloquium. Cambridge, Cambridge University Press, 486–640.

    Google Scholar

    Sisson TW. 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117, 331–344. doi: 10.1016/0009-2541(94)90135-X.

    CrossRef Google Scholar

    Schaen AJ, Singer BS, Cottle JM, Garibaldi N, Schoene B, Satkoski AM, Fournelle J. 2018. Textural and mineralogical record of low-pressure melt extraction and silicic cumulate formation in the late Miocene Risco Bayo–Huemul plutonic complex, southern Andes. Journal of Petrology, 59, 1991–2016. doi: 10.1093/petrology/egy087.

    CrossRef Google Scholar

    Shen P, Hattori K, Pan H, Jackson S, Seitmuratova E. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt. Economic Geology, 110(7), 1861–1878. doi: 10.2113/econgeo.110.7.1861.

    CrossRef Google Scholar

    Shu QH, Lai Y, Wang C, Meng S. 2013. Ore genesis and hydrothermal evolution of the Baiyinnuo’er Zinc-Lead skarn deposit, Northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Economic Geology, 108, 835–860. doi: 10.2113/econgeo.108.4.835.

    CrossRef Google Scholar

    Stuart FM, Turner G, Duckworth RC, Fallick AE. 1994. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology, 22(9), 823–826. doi: 10.1130/0091-7613(1994)022<0823:HIATOT>2.3.CO;2.

    CrossRef Google Scholar

    Taylor HP. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 68(7), 843–883.

    Google Scholar

    Taylor HP, Frechen J, Degens ET. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District. Sweden, Geochimica et Cosmochimica Acta, 31(3), 407–430. doi: 10.1016/0016-7037(67)90051-8.

    Google Scholar

    Tolstikhin IN. 1978. A review: Some recent advances in isotope geochemistry of light rare gases. In: Alexander EC, Ozima M (Eds. ), Terrestrial Rare Gases. Tokyo, Japan Scientific Society Press, 27–62.

    Google Scholar

    Vernon RH, Collins WJ. 2011. Structural criteria for identifying granitic cumulates. Journal of Geology, 119(2), 127–142. doi: 10.1086/658198.

    CrossRef Google Scholar

    Wang XD, Xu DM, Lv XB, Wei W, Mei W, Fan XJ, Su BK. 2018. Origin of the Haobugao skarn Fe-Zn polymetallic deposit, Southern Greatxing’an range, NE China: Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints. Ore Geology Reviews. 94, 58–72. doi: 10.1016/j.oregeorev.2018.01.022.

    CrossRef Google Scholar

    Wei W, Chen JP, Huang XK, Zhu XY, Xu Q, Liu Z. 2017. Magmaticmigmatization of Haliheiba pluton: Petrographicstudy of dark inclusion, U—Pb chronology and Hfisotopeofzircon mineral in centraland southern section of the Da Hinggan M ountainsarea. Mineral Exploration, 8(6). 948–956 (in Chinese with English abstract). DOI: 10.3969/j.issn.1674-7801.2017.06.005.

    Google Scholar

    Wei W, Zou T, Huang XK, Jiang BB, Zhu XY, Wu XY. 2020. Petrogenesis of Early Cretaceous granitoids in the southern Great Xing’an Range, NE China: constraints from the Haliheiba pluton.Geochemistry, 80(2): 125608. doi: 10.1016/j.chemer.2020.125608.

    Google Scholar

    Wu FY, Wilde SA, Sun DY, Zhang G. 2004. Geochronology and petrogenesis of post-orogenic Cu, Ni-bearing mafic–ultramafic intrusions in Jilin, NE China. Journal of Asian Earth Sciences, 23, 781–797. doi: 10.1016/S1367-9120(03)00114-7.

    CrossRef Google Scholar

    Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM. 2011, Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1), 1–30. doi: 10.1016/j.jseaes.2010.11.014.

    Google Scholar

    Xu B, Charvet J, Chen Y, Zhao P, Shi G. 2012. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4), 1342–1364. doi: 10.1016/j.gr.2012.05.015.

    CrossRef Google Scholar

    Xu WL, Wang F, Pei FP, Meng E. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China, constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2), 339–353 (in Chinese with English abstract).

    Google Scholar

    Xu B, Zhao P, Wang Y, Liao W, Luo Z, Bao Q, Zhou Y. 2015. The pre-Devonian tectonic framework of Xing’an–Mongolia orogenic belt (XMOB) in north China. Journal of Asian Earth Sciences, 97, 183–196. doi: 10.1016/j.jseaes.2014.07.020.

    CrossRef Google Scholar

    Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S, Li JL. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6), 1189–1217. doi: 10.1007/s00531-008-0407-z.

    CrossRef Google Scholar

    Yang H, Ma WL, Wang R, Ma XL, Wang KY. 2020. Factors Controlling Deposition of Metallic Minerals in the Meng’entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China: Evidence from Fluid Inclusions, Isotope Systematics, and Thermodynamic Model. Journal of Earth Science, 31(2), 271–286. doi: 10.1007/s12583-019-1273-2.

    CrossRef Google Scholar

    Ye L, Cook NJ, Ciobanu, CL, Liu YP, Zhang Q, Liu TG, Gao, W, Yang YL, Danyushevsky L. 2011. Trace and minor elements in sphalerite from basemetal deposits in South China: A LA-ICPMS study. Ore Geology Review., 39, 188–217. doi: 10.1016/j.oregeorev.2021.104663.

    CrossRef Google Scholar

    Yuan HL, Yin C, Liu X, Chen KY, Bao ZA, Zong CL, Dai MN, Lai SC, Wang R, Jiang SY. 2015. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. Science China (Earth Sciences), 58, 1713–1721. doi: 10.1007/s11430-015-5095-5.

    CrossRef Google Scholar

    Yuan HL, Yuan WT, Cheng C, Liang P, Liu X, Dai M N, Bao Z A, Zong C L, Chen KY, Lai SC. 2016. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer. Solid Earth Sciences, 1(2), 74–78. doi: 10.1016/j.sesci.2016.04.001.

    CrossRef Google Scholar

    Zartman RE, Doe BR. 1981. Plumbo tectonics–the model. Tectonophysics, 75, 135–162. doi: 10.1016/0040-1951(81)90213-4.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Zhang HY, Yao MJ, Wang JP, Yang YQ. 2014. S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang Fe-Sn deposit, Inner Mongolia, NE China. Ore Geology Review, 59, 109–122. doi: 10.1016/j.oregeorev.2013.12.005.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Zhang AL, Sun YQ. 2017. U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn ± Cu ± Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for discrete mineralization events. Economic Geology, 112(8), 2041–2059. doi: 10.5382/econgeo.2017.4540.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Zhang HY, Tombros S, Zhang AL. 2018a. A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit, Inner Mongolia, NE China: Evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies. Ore Geology Reviews, 101, 1–16. doi: 10.1016/j.oregeorev.2018.07.005.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Cook NJ, Wang XL, Yang YQ. 2019a. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineraliu Deposita, 54(1), 47–66. doi: 10.1007/s00126-018-0804-6.

    CrossRef Google Scholar

    Zhai DG, Bindi L, Voudouris CP, Liu JJ, Tombros FS, Li K. 2019b. Discovery of Se-rich canfieldite, Ag8Sn(S, Se)6, from the Shuangjianzishan Ag-Pb-Zn deposit, NE China: A multimethodic chemical and structural study. Mineralogical Magazine, 83(3), 419–426. doi: 10.1180/mgm.2018.158.

    CrossRef Google Scholar

    Zhai DG, Williams-Jones AE, Liu JJ, Selby D, Sun HJ. 2020. The Genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, Northeastern China. Economic Geology, 115(1), 101–128. doi: 10.5382/econgeo.4695.

    CrossRef Google Scholar

    Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 276, 144–165. doi: 10.1016/j.chemgeo.2010.05.013.

    CrossRef Google Scholar

    Zhang Q. 2012. Comment on the popular magmatic hydrothermal mineralization theory. Gansu Geology, 21(4), 1–14 (in Chinese with English abstract).

    Google Scholar

    Zhang HY, Zhai DG, Liu JJ, Li PL, Li K, Sun HJ. 2019. Fluid inclusion and stable (H-O-C) isotope studies of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, NE China. Ore Geology Reviews, 115, 103170. doi: 10.1016/j.oregeorev.2019.103170.

    CrossRef Google Scholar

    Zhou JB, Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4), 1365–1377. doi: 10.1016/j.gr.2012.05.012.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(7)

Article Metrics

Article views(685) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint