2021 Vol. 4, No. 3
Article Contents

Li-he Yin, Dan-dan Xu, Wu-hui Jia, Xin-xin Zhang, Jun Zhang, 2021. Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions, Northwest China, China Geology, 4, 410-420. doi: 10.31035/cg2021052
Citation: Li-he Yin, Dan-dan Xu, Wu-hui Jia, Xin-xin Zhang, Jun Zhang, 2021. Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions, Northwest China, China Geology, 4, 410-420. doi: 10.31035/cg2021052

Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions, Northwest China

More Information
  • Quantitative assessment of the impact of groundwater depletion on phreatophytes in (hyper-) arid regions is key to sustainable groundwater management. However, a parsimonious model for predicting the response of phreatophytes to a decrease of the water table is lacking. A variable saturated flow model, HYDRUS-1D, was used to numerically assess the influences of depth to the water table (DWT) and mean annual precipitation (MAP) on transpiration of groundwater-dependent vegetation in (hyper-) arid regions of northwest China. An exponential relationship is found for the normalized transpiration (a ratio of transpiration at a certain DWT to transpiration at 1 m depth, Ta*) with increasing DWT, while a positive linear relationship is identified between Ta* and annual precipitation. Sensitivity analysis shows that the model is insensitive to parameters, such as saturated soil hydraulic conductivity and water stress parameters, indicated by an insignificant variation (less than 20% in most cases) under ± 50% changes of these parameters. Based on these two relationships, a universal model has been developed to predict the response of phreatophyte transpiration to groundwater drawdown for (hyper-) arid regions using MAP only. The estimated Ta* from the model is reasonable by comparing with published measured values.

  • 加载中
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. doi: 10.1016/j.foreco.2009.09.001.

    CrossRef Google Scholar

    Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration−Guidelines for computing crop water requirements-FAO. Irrigation and drainage paper 56, FAO Rome, 300(9), D05109.

    Google Scholar

    Bhattacharjee J, Taylor JJ, Smith LM, Spence LE. 2008. The importance of soil characteristics in determining survival of first-year cottonwood seedlings in altered riparian habitats. Restoration Ecology, 16(4), 563–571. doi: 10.1111/j.1526-100X.2007.00328.x.

    CrossRef Google Scholar

    Boulariah O, Mikhailov PA, Longobardi A, Elizariev AN, Aksenov SG. 2021. Assessment of prediction performances of stochastic models: Monthly groundwater level prediction in Southern Italy. Journal of Groundwater Science and Engineering, 9(2), 114–120. doi: 10.19637/j.cnki.2305-7068.2021.01.008.

    CrossRef Google Scholar

    Brooks JR, Meinzer FC, Coulombe R, Gregg J. 2002. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology, 22(15−16), 1107–1117. doi: 10.1093/treephys/22.15-16.1107.

    CrossRef Google Scholar

    Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP, Jin W, Billinger MA, Zhan X. 2007. A field investigation of phreatophyte–induced fluctuations in the water table. Water Resources Research, 43(2), 299–309. doi: 10.1029/2005WR004627.

    CrossRef Google Scholar

    Caldwell MM, Richards JH. 1989. Hydraulic lift water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 79(1), 1–5. doi: 10.1007/BF00378231.

    CrossRef Google Scholar

    Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583–595. doi: 10.1007/BF00329030.

    CrossRef Google Scholar

    Chen X, Hu Q. 2004. Groundwater influences on soil moisture and surface evaporation. Journal of Hydrology, 297(1−4), 285–300 (in Chinese with English abstract). doi: 10.1016/j.jhydrol.2004.04.019.

    CrossRef Google Scholar

    Cheng DH, Duan JB, Qian K, Qi LJ, Yang HB, Chen XH. 2017. Groundwater evapotranspiration under psammophilous vegetation covers in the Mu Us Sandy Land northern China. Journal of Arid Land, 9(1), 98–108 (in Chinese with English abstract). doi: CNKI:SUN:GHKX.0.2017-01-009.

    CrossRef Google Scholar

    Collins DBG, Bras RL. 2007. Plant rooting strategies in water–limited ecosystems. Water Resources Research, 43(6), 1–10. doi: 10.1029/2006WR005541.

    CrossRef Google Scholar

    Cooper DJ, D’amico DR, Scott ML. 2003. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping. Environmental Management, 31(2), 215–226. doi: 10.1007/s00267-002-2808-2.

    CrossRef Google Scholar

    Cooper DJ, Sanderson JS, Stannard DI, Groeneveld DP. 2006. Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community. Journal of Hydrology, 325(1), 21–34. doi: 10.1016/j.jhydrol.2005.09.035.

    CrossRef Google Scholar

    Dai Y, Zheng XJ, Tang LS, Li Y. 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389(1–2), 73–87 (in Chinese with English abstract). doi: 10.1007/s11104-014-2342-z.

    CrossRef Google Scholar

    Danielescu S, Van Stempvoort D, Bickerton G, Roy JW. 2020. Use of mature willows (Salix nigra) for hydraulic control of landfill-impacted groundwater in a temperate climate. Journal of Environmental Management, 272, 106–111. doi: 10.1016/j.jenvman.2020.111106.

    CrossRef Google Scholar

    De Graaf I, Van Beek L, Wada Y, Bierkens M. 2014. Dynamic attribution of global water demand to surface water and groundwater resources, effects of abstractions and return flows on river discharges. Advances in Water Resources, 64, 21–33. doi: 10.1016/j.advwatres.2013.12.002.

    CrossRef Google Scholar

    Duan L, Liu T, Wang X, Luo Y, Wang W, Liu X. 2011. Water table fluctuation and its effects on vegetation in a semiarid environment. Hydrology and Earth System Sciences Discussions, 8(2), 3271–3304 (in Chinese with English abstract). doi: 10.5194/hessd-8-3271-2011.

    CrossRef Google Scholar

    Elmore AJ, Manning SJ, Mustard JF, Craine JM. 2006. Decline in alkali meadow vegetation cover in California, the effects of groundwater extraction and drought. Journal of Applied Ecology, 43(4), 770–779. doi: 10.1111/j.1365-2664.2006.01197.x.

    CrossRef Google Scholar

    Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science, 339(6122), 940–943 (in Chinese with English abstract). doi: 10.1126/science.1229881.

    CrossRef Google Scholar

    Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J. 2013. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118 (in Chinese with English abstract). doi: 10.1002/wrcr.20192.

    CrossRef Google Scholar

    Froend R, Sommer B. 2010. Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown, examples of long-term spatial and temporal variability in community response. Ecological Engineering, 36(9), 1191–1200. doi: 10.1016/j.ecoleng.2009.11.029.

    CrossRef Google Scholar

    Gale MR, Grigal DF. 1987. Vertial root distribution of northern tree species in relation to successional status Canadian. Journal of Forest Research, 17(8), 829–834. doi: 10.1139/x87-131.

    CrossRef Google Scholar

    Ganguly S, Nemani RR, Zhang G, Hashimoto H, Milesi C, Michaelis A, Wang W, Votava P, Samanta A, Melton F, Dungan JL, Vermote E, Gao F, Knyazikhin Y, Myneni RB. 2012. Generating global Leaf Area Index from Landsat, Algorithm formulation and demonstration. Remote Sensing of Environment, 122, 185–202. doi: 10.1016/j.rse.2011.10.032.

    CrossRef Google Scholar

    Gazal RM, Scott RL, Goodrich DC, Williams DG. 2006. Controls on transpiration in a semiarid riparian cottonwood forest. Agricultural and Forest Meteorology, 137(1–2), 56–67. doi: 10.1016/j.agrformet.2006.03.002.

    CrossRef Google Scholar

    Gleeson T, Wada Y, Bierkens MF, van Beek LP. 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200. doi: 10.1038/nature11295.

    CrossRef Google Scholar

    Glenn EP, Nagler PL, Huete AR. 2010. Vegetation index methods for estimating evapotranspiration by remote sensing. Surveys in Geophysics, 31(6), 531–555. doi: 10.1007/s10712-010-9102-2.

    CrossRef Google Scholar

    Gonzalez E, Comin FA, Muller E. 2010. Seed dispersal germination and early seedling establishment of Populus alba L under simulated water table declines in different substrates. Trees-structure and Function, 24(1), 151–163. doi: 10.1007/s00468-009-0388-y.

    CrossRef Google Scholar

    Gorelick SM, Zheng C. 2015. Global change and the groundwater management challenge. Water Resources Research, 51(5), 3031–3051. doi: 10.1002/2014WR016825.

    CrossRef Google Scholar

    Gou S, Miller G. 2014. A groundwater-soil-plant-atmosphere continuumapproach for modelling water stress uptake and hydraulic redistribution inphreatophytic vegetation. Ecohydrology, 7, 1029–1041 (in Chinese with English abstract). doi: 10.1002/eco.1427.

    CrossRef Google Scholar

    Groeneveld DP. 2008. Remotely-sensed groundwater evapotranspiration from alkali scrub affected by declining water table. Journal of Hydrology, 358(3−4), 294–303. doi: 10.1016/j.jhydrol.2008.06.011.

    CrossRef Google Scholar

    Gu RS, Liu QL, Pei D, Jiang XN. 2004. Understanding saline and osmotic tolerance of Populus euphratica suspended cells Plant Cell. Tissue and Organ Culture, 78(3), 261–265 (in Chinese with English abstract). doi: 10.1023/B:TICU.0000025666.84313.92.

    CrossRef Google Scholar

    Guswa AJ. 2008. The influence of climate on root depth, a carbon cost–benefit analysis. Water Resources Research, 44(2), 159–167. doi: 10.1029/2007wr006384.

    CrossRef Google Scholar

    Halik Ü, Aishan T, Betz F, Kurban A, Rouzi A. 2019. Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecological Engineering, 127, 11–22. doi: 10.1016/j.ecoleng.2018.11.004.

    CrossRef Google Scholar

    Horton JL, Kolb TE, Hart SC. 2001. Physiological response to groundwater depth varies among species and with river flow regulation. Ecological Applications, 11(4), 1046–1059. doi: 10.2307/3061011.

    CrossRef Google Scholar

    Huntley D. 1979. Ground-water recharge to the aquifers of northern San Luis Valley, Colorado. Geological Society of America Bulletin Part II, 90, 1196–1281. doi: 10.1130/0016-7606(1979)90<707:GRTTAO>2.0.CO;2.

    CrossRef Google Scholar

    Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389–411. doi: 10.1007/BF00333714.

    CrossRef Google Scholar

    Jakeman A, Barreteau O, Hunt RJ, Rinaudo JD, Ross A. 2016. Integrated Groundwater Management. Berlin, Springer, 113–115. doi: 10.1111/gwat.12539.

    Google Scholar

    Jarrell WM, Virginia RA. 1990. Response of mesquite to nitrate and salinity in a simulated phreatic environment, water use dry matter and mineral nutrient accumulation. Plant and Soil, 125(2), 185–196. doi: 10.1007/BF00010656.

    CrossRef Google Scholar

    Jayakody P, Parajuli PB, Sassenrath GF, Ouyang Y. 2014. Relationships between water table and model simulated ET. Groundwater, 52(2), 303–310. doi: 10.1111/gwat.12053.

    CrossRef Google Scholar

    Kollet SJ, Maxwell RM. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated distributed watershed model. Water Resources Research, 44(2), 252–261.

    Google Scholar

    Li CB, Qi JG, Wang SB, Yang LS, Yang WJ, Zou SB, Zhu GF, Li WY. 2014. A holistic system approach to understanding underground water dynamics in the loess tableland,a case study of the Dongzhi Loess Tableland in Northwest China. Water Resources Management, 28(10), 2937–2951 (in Chinese with English abstract). doi: 10.1007/s11269-014-0647-6.

    CrossRef Google Scholar

    Liu B, Guan HD, Zhao WZ, Yang YT, Li SB. 2017. Groundwater facilitated water–use efficiency along a gradient of groundwater depth in arid northwestern China. Agricultural and Forest Meteorology, 233, 235–241 (in Chinese with English abstract). doi: 10.1016/j.agrformet.2016.12.003.

    CrossRef Google Scholar

    Liu X, Wang SF, Huo ZL, Li FS, Hao XM. 2015. Optimizing layout of pumping well in irrigation district for groundwater sustainable use in northwest China. Hydrological Processes, 29(19), 4188–4198 (in Chinese with English abstract). doi: 10.1002/hyp.10471.

    CrossRef Google Scholar

    Liu ZY, Chen H, Huo ZL, Wang FX, Shock CC. 2016. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agricultural Water Management, 171, 131–141 (in Chinese with English abstract). doi: 10.1016/j.agwat.2016.04.002.

    CrossRef Google Scholar

    Luong VV. 2021. Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam. Journal of Groundwater Science and Engineering, 9(1), 20–36. doi: 10.19637/j.cnki.2305-7068.2021.01.003.

    CrossRef Google Scholar

    Ma JX, Huang X, Li WH, Zhu CG. 2013. Sap flow and trunk maximum daily shrinkage (MDS) measurements for diagnosing water status of Populus euphratica in an inland river basin of Northwest China. Ecohydrology, 6(6), 994–1000 (in Chinese with English abstract). doi: 10.1002/eco.1439.

    CrossRef Google Scholar

    Mahoney JM, Rood SB. 1992. Response of a hybrid poplar to water table decline in different substrates. Forest Ecology and Management, 54(1−4), 141–156. doi: 10.1016/0378-1127(92)90009-X.

    CrossRef Google Scholar

    Martin D, Chambers J. 2002. Restoration of riparian meadows degraded by livestock grazing, above–and belowground responses. Plant Ecology, 163(1), 77–91. doi: 10.1023/A:1020372220163.

    CrossRef Google Scholar

    Mata-Gonzalez R, McLendon T, Martin DW, Trlica MJ, Pearce RA. 2012. Vegetation as affected by groundwater depth and microtopography in a shallow aquifer area of the Great Basin. Ecohydrology, 5(1), 54–63. doi: 10.1002/eco.196.

    CrossRef Google Scholar

    McColl KA, Alemohammad SH, Akbar R, Konings AG, Yueh S, Entekhabi D. 2017. The global distribution and dynamics of surface soil moisture. Nature Geoscience, 10(2), 100–104. doi: 10.1038/ngeo2868.

    CrossRef Google Scholar

    Miranda MT, da Silva SF, Moura BB, Hayashi AH, Machado EC, Ribeiro RV. 2018. Hydraulic redistribution in Citrus rootstocks under drought. Theoretical and Experimental Plant Physiology, 30(3), 165–172. doi: 10.1007/s40626-018-0111-8.

    CrossRef Google Scholar

    Moore RE. 1939. Water conduction from shallow water tables. Hilgardia, 12, 383–426. doi: 10.3733/hilg.v12n06p383.

    CrossRef Google Scholar

    Nagler PL, Scott RL, Westenburg C, Cleverly JR, Glenn EP, Huete AR. 2005. Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment, 97(3), 337–351. doi: 10.1016/j.rse.2005.05.011.

    CrossRef Google Scholar

    Naumburg E, Mata-Gonzalez R, Hunter RG, Mclendon T, Martin DW. 2005. Phreatophytic vegetation and groundwater fluctuations, a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environmental Management, 35(6), 726–740. doi: 10.1007/s00267-004-0194-7.

    CrossRef Google Scholar

    Nichols WD. 1994. Groundwater discharge by phreatophyteshrubs in the Great Basin as related to depth to groundwater. Water Resources Research, 30, 3265–3274. doi: 10.1029/94WR02274.

    CrossRef Google Scholar

    Nippert JB, Butler JJ, Kluitenberg GJ, Whittemore DO, Arnold D, Spal SE, Ward JK. 2010. Patterns of Tamarix water use during a record drought. Oecologia, 162(2), 283–292. doi: 10.1007/s00442-009-1455-1.

    CrossRef Google Scholar

    Novakowski KS, Gillham RW. 1988. Field investigations of the nature of water–table response to precipitation in shallow water-table environments. Journal of Hydrology, 97(1−2), 23–32. doi: 10.1016/0022-1694(88)90063-7.

    CrossRef Google Scholar

    Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science, 313, 1068–1072. doi: 10.1126/science.1128845.

    CrossRef Google Scholar

    Oosterbaan A, Nabuurs GJ. 1991. Relationships between oak decline and groundwater class in the Netherlands. Plant and Soil, 136(1), 87–93. doi: 10.1007/BF02465223.

    CrossRef Google Scholar

    Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N. 2008. Climate change and the world’s river basins, anticipating management options. Frontiers in Ecology and the Environment, 6(2), 81–89. doi: 10.1890/060148.

    CrossRef Google Scholar

    Pokhrel YN, Koirala S, Yeh PJF, Hanasaki N, Longuevergne L, Kanae S, Oki T. 2015. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resources Research, 51, 78–96. doi: 10.1002/2014WR015602.

    CrossRef Google Scholar

    Prieto I, Armas C, Pugnaire FI. 2012. Water release through plant roots, new insights into its consequences at the plant and ecosystem level. New Phytologist, 193, 830–841. doi: 10.1111/j.1469-8137.2011.04039.x.

    CrossRef Google Scholar

    Pritchett D, Manning SJ. 2012. Response of an intermountain groundwater–dependent ecosystem to water table drawdown. Western North American Naturalist, 72(1), 48–59. doi: 10.2307/41718313.

    CrossRef Google Scholar

    Rahman MM, Lu M. 2015. Model spin-up behavior for wet and dry basins, a case study using the Xinanjiang model. Water, 7(8), 4256–4273. doi: 10.3390/w7084256.

    CrossRef Google Scholar

    Ritchie JT. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5), 1204–1213. doi: 10.1029/WR008i005p01204.

    CrossRef Google Scholar

    Ryel R, Caldwell M, Yoder C, Or D, Leffler A. 2002. Hydraulic redistribution in a stand of Artemisia tridentata, evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173–184. doi: 10.2307/4223154.

    CrossRef Google Scholar

    Sanderson JS, Cooper DJ. 2008. Ground water discharge by evapotranspiration in wetlands of an arid intermountain basin. Journal of Hydrology, 351(3−4), 344–359. doi: 10.1016/j.jhydrol.2007.12.023.

    CrossRef Google Scholar

    Schaap MG, Leij FJ, van Genuchten MT. 2001. Rosetta, acomputer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3−4), 163–176. doi: 10.1016/S0022-1694(01)00466-8.

    CrossRef Google Scholar

    Schenk HJ, Jackson RB. 2002. Rooting depths lateral root spreads and below–ground/above–ground allometries of plants in water–limited ecosystems. Journal of Ecology, 90(3), 480–494. doi: 10.1046/j.1365-2745.2002.00682.x.

    CrossRef Google Scholar

    Scott ML, Lines GC, Auble GT. 2000. Channel incision and patterns of cottonwood stress and mortality along the Mojave River California. Journal of Arid Environments, 44(4), 399–414. doi: 10.1006/jare.1999.0614.

    CrossRef Google Scholar

    Scott ML, Shafroth PB, Auble GT. 1999. Responses of riparian cottonwoods to alluvial water table declines. Environmental Management, 23(3), 347–358. doi: 10.1007/s002679900191.

    CrossRef Google Scholar

    Seck A, Welty C, Maxwell RM. 2015. Spin-up behavior and effects of initial conditions for an integrated hydrologic model. Water Resources Research, 51(4), 2188–2210. doi: 10.1002/2014WR016371.

    CrossRef Google Scholar

    Segelquist CA, Scott ML, Auble GT. 1993. Establishment of Populus deltoides under simulated alluvial groundwater declines. American Midland Naturalist, 130(2), 274–285. doi: 10.2307/2426127.

    CrossRef Google Scholar

    Shah N, Nachabe M, Ross M. 2007. Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water, 45(3), 329–338. doi: 10.1111/j.1745-6584.2007.00302.x.

    CrossRef Google Scholar

    Shakerkhatibi M, Mosaferi M, Jafarabadi MA, Lotfi E, Belvasi M. 2014. Pesticides residue in drinking groundwater resources of rural areas in the northwest of Iran. Health Promotion Perspectives, 4(2), 195–205. doi: 10.5681/hpp.2014.026.

    CrossRef Google Scholar

    Shen Q, Gao GY, Fu BJ, Lü YH. 2015. Responses of shelterbelt stand transpiration to drought and groundwater variations in an arid inland river basin of Northwest China. Journal of Hydrology, 531, 738–748 (in Chinese with English abstract). doi: 10.1016/j.jhydrol.2015.10.053.

    CrossRef Google Scholar

    Simunek J, Sejna M, Saito H, Sakai M. 2008. The HYDRUS–1D software package for simulating the onedimensional movement of water heat and multiple solutes in variably–saturated media. Version 40 x Hydrus Series 3. California, Department of Environmental Sciences, University of California, Riverside.

    Google Scholar

    Smith SD, Devitt DA, Sala A, Cleverly JR, Busch DE. 1998. Water relations of riparian plants from warm desert regions. Wetlands, 18(4), 687–696. doi: 10.1007/BF03161683.

    CrossRef Google Scholar

    Snyder KA, Williams DG. 2000. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agricultural and Forest Meteorology, 105(1), 227–240. doi: 10.1016/S0168-1923(00)00193-3.

    CrossRef Google Scholar

    Soylu ME, Istanbulluoglu E, Lenters JD, Wang T. 2011. Quantifying the impact of groundwater depth on evapotranspiration in a semi–arid grassland region. Hydrology and Earth System Sciences, 15(3), 787–806. doi: 10.5194/hess-15-787-2011.

    CrossRef Google Scholar

    Steinwand AL, Harrington RF, Groeneveld DP. 2001. Transpiration coefficients for three Great Basin shrubs. Journal of Arid Environments, 49(3), 555–567. doi: 10.1006/jare.2001.0794.

    CrossRef Google Scholar

    Sun ZY, Long X, Ma R. 2015. Water uptake by saltcedar (Tamarix ramosissima) in a desert riparian forest, responses to intra–annual water table fluctuation. Hydrological Processes, 30(9), 1388–1402 (in Chinese with English abstract). doi: 10.1002/hyp.10688.

    CrossRef Google Scholar

    Thomas FM, Foetzki A, Gries D, Bruelheide H, Li X, Zeng F, Zhang X. 2008. Regulation of the water status in three co–occurring phreatophytes at the southern fringe of the Taklamakan Desert. Journal of Plant Ecology, 1(4), 227–235. doi: 10.1093/jpe/rtn023.

    CrossRef Google Scholar

    van Genuchten MT. 1987. A numerical model for water and solute movement in and below the root zone. California, US Salinity Laboratory USDA Riverside, Research Report, 3–6.

    Google Scholar

    Wang P, Grinevsky SO, Pozdniakov SP, Yu JJ, Dautova DS, Min LL, Du CY, Zhang YZ. 2014. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte–dominated sites under hyper-arid environments. Journal of Hydrology, 519(1), 2289–2300. doi: 10.1016/j.jhydrol.2014.09.087.

    CrossRef Google Scholar

    Wang P, Yu JJ, Pozdniakov SP, Grinevsky SO, Liu CM. 2014. Shallow groundwater dynamics and its driving forces in extremely arid areas, a case study of the lower Heihe River in northwestern China. Hydrological Processes, 28(3), 1539–1553 (in Chinese with English abstract). doi: 10.1002/hyp.9682.

    CrossRef Google Scholar

    Wang P, Zhang YZ, Yu JJ, Fu GB, Ao F. 2011. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin northwestern China. Journal of Plant Ecology, 4(1−2), 77–90 (in Chinese with English abstract). doi: 10.1093/jpe/rtr002.

    CrossRef Google Scholar

    Wang YG, Li Y. 2013. Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena, 100, 50–56 (in Chinese with English abstract). doi: 10.1016/j.catena.2012.08.005.

    CrossRef Google Scholar

    Williams CA, Cooper DJ. 2005. Mechanisms of riparian cottonwood decline along regulated rivers. Ecosystems, 8(4), 382–395. doi: 10.2307/25053837.

    CrossRef Google Scholar

    Wösten JHM, Pachepsky YA, Rawls WJ. 2001. Pedotransfer functions, bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251(3−4), 123–150. doi: 10.1016/S0022-1694(01)00464-4.

    CrossRef Google Scholar

    Wullschleger SD, Meinzer FC, Vertessy RA. 1998. A review of whole-plant water use studies in tree. Tree Physiology, 18(8−9), 499–512. doi: 10.1093/treephys/18.8-9.499.

    CrossRef Google Scholar

    Xu HL, Ye M, Song YD, Chen YN. 2007. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River. Environmental Monitoring and Assessment, 131(1−3), 37–48 (in Chinese with English abstract). doi: 10.1007/s10661-006-9455-7.

    CrossRef Google Scholar

    Yadav BK, Mathur S, Siebel MA. 2009. Soil moisture dynamics modeling considering the root compensation mechanism for water uptake by plants. Journal of Hydrologic Engineering, 14(9), 913–922. doi: 10.1061/(ASCE)HE.1943-5584.0000066.

    CrossRef Google Scholar

    Yang Y, Donohue RJ, McVicar TR. 2016. Global estimation of effective plant rooting depth, implications for hydrological modeling. Water Resources Research, 52(10), 8260–8276 (in Chinese with English abstract). doi: 10.1002/2016wr019392.

    CrossRef Google Scholar

    Yin LH, Zhou YX, Huang JT, Wenninger J, Hou GC, Zhang EY, Wang XY, Dong JQ, Zhang J, Uhlenbrook S. 2014. Dynamics of willow tree (Salix matsudana) water use and its response to environmental factors in the semi-arid Hailiutu River catchment, Northwest China. Environmental Earth Sciences, 71(12), 4997–5006 (in Chinese with English abstract). doi: 10.1007/s12665-013-2891-0.

    CrossRef Google Scholar

    Yin LH, Zhou YX, Huang JT, Wenninger J, Zhang EY, Hou GC, Dong JQ. 2015. Interaction between groundwater and trees in an arid site, Potential impacts of climate variation and groundwater abstraction on trees. Journal of Hydrology, 528, 435–448 (in Chinese with English abstract). doi: 10.1016/j.jhydrol.2015.06.063.

    CrossRef Google Scholar

    Yin LH, Zhou YX, Xu DD, Zhang J, Wang XY, Ma HY, Dong JQ. 2018. Response of phreatophytes to short–term groundwater pumping in a semiarid region, field experiments and numerical simulations. Ecohydrology, 11(4), e1948 (in Chinese with English abstract). doi: 10.1002/eco.1948.

    CrossRef Google Scholar

    Yu TF, Feng Q, Si JH, Xi HY, Li ZX, Chen AF. 2013. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China’s extremely arid region. Plant and Soil, 372(1−2), 297–308 (in Chinese with English abstract). doi: 10.1007/s11104-013-1727-8.

    CrossRef Google Scholar

    Zhang P, Yuan GF, Shao MA, Yi X, Du T. 2016. Performance of the white method for estimating groundwater evapotranspiration under conditions of deep and fluctuating groundwater. Hydrological Processes, 30(1), 106–118 (in Chinese with English abstract). doi: 10.1002/hyp.10552.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(1620) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint