2022 Vol. 5, No. 1
Article Contents

Xiu-jin Liu, Ke Yang, Fei Guo, Shi-qi Tang, Ying-han Liu, Li Zhang, Hang-xin Cheng, Fei Liu, 2022. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China, China Geology, 5, 1-11. doi: 10.31035/cg2021038
Citation: Xiu-jin Liu, Ke Yang, Fei Guo, Shi-qi Tang, Ying-han Liu, Li Zhang, Hang-xin Cheng, Fei Liu, 2022. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China, China Geology, 5, 1-11. doi: 10.31035/cg2021038

Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China

More Information
  • To illuminate the migration and transformation of selenium (Se) in the igneous rock-soil-rice system, 285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province, South China. The contents of Se in soils derived from granitoid and basalt are, respectively, 0.19±0.12 mg/kg and 0.34±0.39 mg/kg, which are much higher than Se contents in granitoid and basalt. Selenium shows remarkable enrichment from granitoid and basalt to soils. The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg, which is significantly higher than that of basalt (0.0058±0.0039 mg/kg). Although soil derived from basalt shows higher Se contents, Se contents in rice samples, mobile fractions of Se in soils, and biological concentration factor (BCF) is similar or even lower than that from granitoid. Basalt consist of calcic plagioclase and pyroxene, and are much richer in Fe, Al, and Ca than granitoid. Correspondingly, the basalt-derived soils have higher goethite, hematite, kaolinite, cation exchange capacity (CEC) content, and higher pH than the granitoid-derived soils, which result in higher adsorption capacity for Se and relatively lower Se bioavailability. Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.

  • 加载中
  • Ali F, Peng Q, Wang D, Cui ZW, Huang J, Fu DD, Liang DL. 2017. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 24, 8315–8325. doi: 10.1007/s11356-017-8512-9.

    CrossRef Google Scholar

    Alleoni LRF, Peixoto RTG, Azevedo AC, Melo LCA. 2009. Components of surface charge in tropical soils with contrasting mineralogies. Soil Science, 174, 629–638. doi: 10.1097/SS.0b013e3181c17a93.

    CrossRef Google Scholar

    Alonso U, Missana T, Patelli A, Ceccato D, Garcia-Gutierrez M, Rigato V. 2014. Se (IV) uptake by Aspǒ diorite: Micro-scale distribution. Applied Geochemistry, 49, 87–94. doi: 10.1016/j.apgeochem.2014.06.013.

    CrossRef Google Scholar

    Balistrieri LS, Chao TT. 1987. Selenium adsorption by goethite. Soil Chemistry, 51(5), 1145–1151. doi: 10.2136/sssaj1987.03615995005100050009x.

    CrossRef Google Scholar

    Barrow NJ, Whelan BR. 1980. Testing a mechanistic model, VII. The effects of pH and of electrolyte on the reaction of selenite and selenate with a soil. Journal of Soil Science, 40, 17–28. doi: 10.1111/j.1365-2389.1989.tb01250.x.

    CrossRef Google Scholar

    Bruggeman C, Maes N, Christiansen BC, Stipp SLS, Breynaert E, Maes A, Regenspurg S, Malstrom ME, Liu X, Grambow B. 2012. Redox-active phases and radionuclide equilibrium valence state in subsurface environments-New insights from 6th EC FP IP FUNMIG. Applied Geochemistry, 27, 404–413. doi: 10.1016/j.apgeochem.2011.09.010.

    CrossRef Google Scholar

    Ceryan S, Sen C. 1999. Weathering of Granitic Rocks at Sub-tropical Climate: An Example from Harsit Granitoids, NE Turkey. Geochemistry of the Earth’s Surface International Symposium, 373–375.

    Google Scholar

    Chan YT, Kuan WH, Chen TY, Wang MK. 2009. Adsorption mechanism of selenate and selenite on the binary oxide systems. Water Research, 43, 4412–4420. doi: 10.1016/j.watres.2009.06.056.

    CrossRef Google Scholar

    Chang CY, Yin RS, Wang X, Shao SX, Chen CY, Zhang H. 2019. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. Science of the Total Environment, 669, 83–90. doi: 10.1016/j.scitotenv.2019.02.451.

    CrossRef Google Scholar

    Chen HM. 2010. Environmental Soil Science. Beijing, Science Press, 89–93 (in Chinese).

    Google Scholar

    Chen XY. 2014. Temporal and Spatial Distribution and Geomorphic Response of Cenozoic Basalt in East-Central China. Nanjing, Nanjing University, Master thesis, 16–31 (in Chinese with English abstract).

    Google Scholar

    Dhillon KS, Dhillon SK. 2003. Distribution and management of seleniferous soils. Advances in Agronomy, 79(1), 119–184. doi: 10.1016/S0065-2113(02)79003-2.

    CrossRef Google Scholar

    Dhillon KS, Dhillon SK. 2014. Development and mapping of seleniferous soils in northwestern India. Chemosphere, 99, 56–63. doi: 10.1016/j.chemosphere.2013.09.072.

    CrossRef Google Scholar

    Duc M, Lefèvre G, Féxdoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S. 2003. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. Journal of Environmental Radioactivity, 70(1–2), 61–72. doi: 10.1016/S0265-931X(03)00125-5.

    CrossRef Google Scholar

    Duc M, Lefèvre G, Féxdoroff M. 2006. Sorption of selenite ions on hematite. Journal of Colloid & Interface Science, 298(2), 556–563. doi: 10.1016/j.jcis.2006.01.029.

    CrossRef Google Scholar

    Eiche E, Bardelli F, Nothstein AK, Charlet L, Gottlicher J, Steininger R, Dhillon KS, Sadana US. 2015. Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Science of the Total Environment, 505, 952–961. doi: 10.1016/j.scitotenv.2014.10.080.

    CrossRef Google Scholar

    Fan HF, Wen HJ, Zhang GS, Hu RZ. 2008. Selenium and sulfur systematics of maifc dykes in western Fujian Province, Southern China. Acta Geologica Sinica (English Edition), 82(4), 884–895.

    Google Scholar

    Floor GH, Román-Ross G. 2012. Selenium in volcanic environments: A review. Applied Geochemistry, 27, 517–531. doi: 10.1016/j. apgeochem.2011.11.010.

    CrossRef Google Scholar

    Fontes MPF, Alleoni LRF. 2006. Electrochemical attributes and availability of nutrients, toxic elements, and heavy metal in tropical soil. Science Agriculture, 63, 589–608.

    Google Scholar

    Forrest A, Kelley KA, Schilling JG. 2017. Selenium, tellurium and sulfur variations in basalts along the Reykjanes Ridge and extension over Iceland, from 50°N to 65°N. Interdisciplinary Earth Data Alliance, doi: 10.1594/IEDA/100700.

    Google Scholar

    Fordyce FM, Zhang G, Green K, Liu X. 2000. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi district, China. Applied Geochemistry, 15, 117–132. doi: 10.1016/S0883-2927(99)00035-9.

    CrossRef Google Scholar

    Gabos MB, Goldberg S, Alleoni LRF. 2014. Modeling selenium (IV and VI) adsorption envelopes in selected tropical soils using the constant capacitance model. Environmental Toxicology and Chemistry, 33(10), 2197–2207. doi: 10.1002/etc.2574.

    CrossRef Google Scholar

    Ge XY. 2003. Mesozoic Magmatism in Hainan Island (SE China) and Its Tectonic Significance: Geochronology, Geochemistry and Sr-Nd Isotope Evidences. Guangzhou, Institute of Guangzhou Geochemistry, Chinese Academy of Sciences, Ph.D thesis, 1–23 (in Chinese with English Abstract).

    Google Scholar

    Geng JM. 2010. Chemical characteristics of selenium in paddy soils and genotypic differences and mechanism of selenium adsorption and accumulation of rice in Hainan Province.Haikou, Hainan University, Ph. D thesis, 1–79 (in Chinese with English Abstract).

    Google Scholar

    Geng JM, Wang WB, Wen CP, Yi ZY, Tang SM. 2012. Concentrations and distributions of selenium and heavy metals in Hainan paddy soil and assessment of ecological security. Acta Ecologica Sinica, 32(11), 3477–3486. doi: 10.5846/stxb201105210667.

    CrossRef Google Scholar

    Goh KH, Lim TT. 2004. Geochemistry of inorganic arsenic and selenium in a tropical soil: Effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere, 55, 849–859. doi: 10.1016/j.chemosphere.2003.11.041.

    CrossRef Google Scholar

    Goldberg S. 2013. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model. Soil Science Society of America Journal, 77, 64–71. doi: 10.2136/sssaj2012.0205.

    CrossRef Google Scholar

    Goldberg S. 2014. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model. Soil Science, 179, 568–576. doi: 10.1097/SS.0000000000000097.

    CrossRef Google Scholar

    Gong JF. 2012. Time-space Distribution Features of Cenozoic Basalts in South China and the Geodynamic Model. Beijing, Peking University, Post-doctoral research report, 1–63 (in Chinese with English abstract).

    Google Scholar

    Hao Z, Li YH, Zou XQ, Chen LH. 2018. Distribution and transfer of Se in soil of Hainan Province. IOP Conference Series: Earth and Environmental Science, 199, 1–6.

    Google Scholar

    Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA. 1987. In situ X-ray absorption study of surface complexes: Selenium oxyanions on a α-FeOOH. Science, 238, 783–786. doi: 10.1126/science.238.4828.783.

    CrossRef Google Scholar

    Hertogen J, Janssens MJ, Palme H. 1980. Trace elements in ocean ridge basalt glasses: Implications for fractionations during mantle evolution and petrogenesis. Geochimica et Cosmochimica Acta, 44(12), 2125–2143. doi: 10.1016/0016-7037(80)90209-4.

    CrossRef Google Scholar

    Huang CM, Gong ZT. 2001. Quantitative studies on development of tropical soils: A case study in Northern Hainan Island. Journal of China University of Geoscience, 26(3), 315–321 (in Chinese with English abstract).

    Google Scholar

    Huh Y. 2003. Chemical weathering and climate-a global experiment: A review. Geoscience Journal, 7(3), 277–288. doi: 10.1007/BF02910294.

    CrossRef Google Scholar

    Iida Y, Yamaguchi T, Tanaka T. 2014. Sorption behavior of hydroselenide (HSe) onto iron-containing minerals. Journal of Nuclear Science Technology, 51, 305–322. doi: 10.1080/00223131.2014.864457.

    CrossRef Google Scholar

    Jan YL, Wang TH, Li MH, Tsai SC, Wei YY, Teng SP. 2008. Adsorption of Se species on crushed granite: A direct linkage with its internal iron-related minerals. Applied Radiation & Isotopes, 66, 14–23. doi: 10.1016/j.apradiso.2007.08.007.

    CrossRef Google Scholar

    Jang M, Pak S, Kim MJ. 2015. Comparison of adsorption characteristics of Se (IV) and Se (VI) onto hematite: Effects of reaction time, initial concentration, pH, and ionic strength. Environmental Earth Science, 74, 1169–1173. doi: 10.1007/s12665-015-4103-6.

    CrossRef Google Scholar

    Kang Y, Inoue N, Rashid MM, Sakurai K. 2002. Fixation of soluble selenium in contaminated soil by amorphous iron (hydr) oxide. Environmental Science, 15, 173–182. doi: 10.11353/sesj1988.15.173.

    CrossRef Google Scholar

    Kǒnig S, Luguet A, Lorand JP, Wombacher F, Lissner M. 2012. Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochimica et Cosmochimica Acta, 86, 354–366. doi: 10.1016/j.gca.2012.03.014.

    CrossRef Google Scholar

    Kuan WH, Lo SL, Wang MK, Lin CF. 1997. Removal of Se (IV) and Se (VI) from water by aluminum-oxide-coated sand. Water Research, 32(3), 915–923. doi: 10.1016/S0043-1354(97)00228-5.

    CrossRef Google Scholar

    Lee S, Doolittle JJ, Woodard HJ. 2011. Selenite adsorption and desorption in selected South Dakota soils as a function of pH and other oxyanions. Soil Science, 176, 73–79. doi: 10.1097/SS.0b013e31820a0ff6.

    CrossRef Google Scholar

    Li FY, Qi ZP, Li XM. 2016. Survey and research of selenium contents in farmland soil and crops of Haikou. China. Chinese Journal of Soil Science, 47(3), 630–635 (in Chinese with English abstract).

    Google Scholar

    Li XD, Puhakka E, Ikonen J, Soderlund M, Lindberg A, Holgersson S, Martin A, Siitari-Kauppi M. 2018. Sorption of Se species on mineral surfaces, part I: Batch sorption and multi-site modelling. Applied Geochemistry, 95, 147–157. doi: 10.1016/j.apgeochem.2018.05.024.

    CrossRef Google Scholar

    Li Z, Liang DL, Peng Q, Cui ZW, Huang J, Lin ZQ. 2017. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69–79. doi: 10.1016/j.geoderma.2017.02.019.

    CrossRef Google Scholar

    Lissner M, Kǒnig S, Luguet A, le Roux PJ, Schuth S, Heuser A, le Roex AP. 2014. Selenium and tellurium systematics in MORBs from the southern Mid-Atlantic Ridge (47–50°S). Geochimica et Cosmochimica Acta, 144, 379–402. doi: 10.1016/j.gca.2014.08.023.

    CrossRef Google Scholar

    Liu XJ, Yang K, Cheng HX, Tang SQ, Guo F, Liu F. 2020. Control factors of selenium content and bioavailability of rice root soil in shale and carbonate rock areas, Luzhou City, Sichuan Province. Geological Bulletin of China, 39(12), 1919–1931.

    Google Scholar

    Liu ZF, Wang H, Hantoro WS, Sathiamurthy E, Colin C, Zhao YL, Li JR. 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology, 291, 1–12. doi: 10.1016/j.chemgeo.2011.11.015.

    CrossRef Google Scholar

    Lorand, JP, Alard O, Luguet A, Keays RR. 2003. Sulfur and selenium systematics of the subcontinental lithospheric mantle: Inferences from the Massif Central xenolith suite (France). Geochimica et Cosmochimica Acta, 67, 4137–4151. doi: 10.1016/S0016-7037(03)00305-3.

    CrossRef Google Scholar

    Luo SL. 2013. Source analysis of selenium in soil in Taishan City. Jounal of Anhui Agricultural Science, 41(12), 5333–5334 (in Chinese with English abstract).

    Google Scholar

    Ma ZP, Jiang ZX, Zheng Q. 1996. Weathering of biotite in some weathered granite and gneiss from some subtropical and tropical area of China. Journal of Mineralogy and Petrology, 16(2), 17–24 (in Chinese with English abstract).

    Google Scholar

    Malisa EP. 2001. The behavior of selenium in geological processes. Environmental Geochemistry and Health, 23, 137–158. doi: 10.1023/A:1010908615486.

    CrossRef Google Scholar

    McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120, 223–253. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Mei SW. 2018. The petrogenesis and geodynamic mechanism of Late Cenozoic basalts in North Hainan Island. Beijing, University of Chinese Academy of Sciences, Ph.D thesis, 1–72 (in Chinese with English abstract).

    Google Scholar

    Missana T, Alonso U, García-Gutiérrez M. 2009. Experimental study and modelling of selenite sorption onto illite and smectite clays. Journal of Colloid and Interface Science, 334, 132–138. doi: 10.1016/j.jcis.2009.02.059.

    CrossRef Google Scholar

    Navarro-Alarcón M, López-MartıNez MC. 2000. Essentiality of selenium in the human body: Relationship with different diseases. Science of the Total Environment, 249, 347–371. doi: 10.1016/S0048-9697(99)00526-4.

    CrossRef Google Scholar

    Peak D, Sparks DL. 2002. Mechanisms of selenate adsorption on iron oxides and hydroxides. Environmental Science & Technology, 36(7), 1460–1466. doi: 10.1021/es0156643.

    CrossRef Google Scholar

    Plant JA, Bone J, Voulvoulis N, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck B. 2014. Arsenic and Selenium. In: Turekian KK, Holland HD. Treatise on Geochemistry (2nd Edition), 11(2), 13–57.

    Google Scholar

    Qin HB, Zhu JM, Lin ZQ, Xu WP, Tan DC, Zheng LR, Takahashi Y. 2017. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environmental Pollution, 225, 361–369. doi: 10.1016/j.envpol.2017.02.062.

    CrossRef Google Scholar

    Rayman MP. 2012. Selenium and human health. Lancet, 379, 1256–1268. doi: 10.1016/S0140-6736(11)61452-9.

    CrossRef Google Scholar

    Rovira M, Gimenez J, Martinez M, Martinez-Llado X, Pablo J, Marti V, Duro L. 2008. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 150, 279–284. doi: 10.1016/j.jhazmat.2007.04.098.

    CrossRef Google Scholar

    Rudnick RL, Gao S. 2014. Composition of the Continental Crust. In: Holland HD, Turekian KK. Treatise on Geochemistry 2nd Edition, Amsterdam, Elsevier, 1–51.

    Google Scholar

    Shi CY, Yan MC, Chi QH. 2008. On Abundance and Distribution of the Chemical Elements in Granitoid of China. Beijing, Geological Publishing House, 1–119 (in Chinese).

    Google Scholar

    Shu XJ. 2014. Genesis of Mesozoic Granite and Crustal Evolution in Nanling Area of South China. Nanjing, Nanjing University, Ph.D thesis, 1–145 (in Chinese with English abstract).

    Google Scholar

    Song Q. 1983. Selenium in soils and plants. In: Gong ZT (eds.), Progress and Application of Soil Geochemistry. Beijing, Science Press, 251–252 (in Chinese).

    Google Scholar

    Su C, Suarez DL. 2000. Selenate and selenite sorption on iron oxides: An infrared and electrophoretic study. Soil Science Society of America Journal, 64, 101–111. doi: 10.2136/sssaj2000.641101x.

    CrossRef Google Scholar

    Sun T. 2006. A new map showing the distribution of granites in south China and its explanatory notes. Geological Bulletin of China, 25(3), 332–335 (in Chinese with English abstract).

    Google Scholar

    Tachi Y, Shibutani T, Sato H, Yui M. 1998. Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrology, 35, 77–89. doi: 10.1016/S0169-7722(98)00117-X.

    CrossRef Google Scholar

    Tian H, Ma ZZ, Chen XL, Zhang HY, Bao ZY, Wei CH, Xie SY, Wu, S T. 2016. Geochemical characteristics of selenium and its correlation to other elements and minerals in selenium-enriched rocks in Ziyang County, Shaanxi Province, China. Journal of Earth Science, 27(5), 763–776. doi: 10.1007/s12583-016-0700-x.

    CrossRef Google Scholar

    Tian XL, Luo KL, Zuza AV. 2017. The trace element distribution patterns of Ediacaran-Early Cambrian black shales and the origin of selenium in the Guangning area, Western Guangdong Province, South China. Acta Geologica Sinica (English Edition), 91(6), 1978–1991. doi: 10.3969/j.issn.1000-9515.2017.06.003.

    CrossRef Google Scholar

    Ticknor KV, McMurry J. 1996. A study of selenium and tin sorption on granite and goethite. Radiochimica Acta, 73(3), 149–156. doi: 10.1524/ract.1996.73.3.149.

    CrossRef Google Scholar

    Videnská K, Gondolli J, Stamberg K, Havlová V. 2015. Retention of selenium and caesium on crystalline rock: The effect of redox conditions and mineralogical composition. Journal of Radioanalytical & Nuclear Chemistry, 304, 417–423. doi: 10.1007/s10967-014-3885-4.

    CrossRef Google Scholar

    Videnská, K, Havlová V, 2012. Retention of anionic species on granite: Influence of granite composition. WM2012 Conference, Phoenix, Arizona, USA, 1–8.

    Google Scholar

    Wang DF, Wei ZY, Tang SM, Qi ZP. 2014. Distribution of selenium and cadmium in soil-rice system selenium-rich area in Hainan, China. Pakistan Journal of Pharmaceutical Sciences, 27(5), 1633–1639.

    Google Scholar

    Wang J, Li HR, Li YH, Yu JP, Yang LS, Feng FJ, Chen Z. 2013. Speciation, distribution and bioavailability of soil selenium in the Tibetan plateau Kashin-Beck disease area–a case study in Songpan County, Sichuan Province, China. Biological Trace Element Research, 156, 367–375. doi: 10.1007/s12011-013-9822-5.

    CrossRef Google Scholar

    Wang Y, Wei FS. 1995. Chemistry of Elements in the Pedosphere Environment. Beijing, China Environmental Science Press (in Chinese).

    Google Scholar

    Wells N. 1967. Selenium content of soil-forming rocks. New Zealand Journal of Geology & Geophysics, 10, 198–208. doi: 10.1080/00288306.1967.10428190.

    CrossRef Google Scholar

    Wen SN. 2013. Geochronologic and geochemical studies of Permian-Triassic magmatism in Hainan Island, South China. Institute of Guanghzou Geochemistry, Chinese Academy of Sciences, Ph.D thesis, 1–88 (in Chinese with English abstract).

    Google Scholar

    Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L. 2012. Environmental selenium research: From microscopic processes to global understanding. Environmental Science & Technology, 46, 571–579. doi: 10.1021/es203434d.

    CrossRef Google Scholar

    Wu J. 2018. The distribution of soil selenium in Shouning County of Fujian Province and its influencing factors. Geology in China, 45(6), 1167–1176 (in Chinese with English abstract).

    Google Scholar

    Xia WP, Tan JA. 1990. A comparative study of selenium content in Chinese rocks. Acta Scientiae Circumstantiae, 10(2), 125–131.

    Google Scholar

    Xu WQ, Yang C, Zhang DM, Wang LH, Xie LS. 2018. Distribution characteristics of total selenium content in main soil types in Hainan Island. Guizhou Agricultural Science, 46(10), 67–71 (in Chinese with English abstract).

    Google Scholar

    Xu YF, Li YH, Li HR, Wang L, Liao XY, Wang J, Kong C. 2018. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Science of the Total Environment, 633, 240–248. doi: 10.1016/j.scitotenv.2018.03.190.

    CrossRef Google Scholar

    Yang DY, Chen SJ, Ma YJ. 2002. The characteristics of clay minerals in the soil of Hainan island and their application in soil taxonomic classification. Acta Pedologica Sinica, 39(4), 467–475 (in Chinese with English abstract).

    Google Scholar

    Yang ZF, Yu T, Hou QY, Yang Y, Fu YR, Zhao XL. 2012. Geochemical characteristics of soil selenium in farmland of Hainan Island. Geoscience, 26(5), 837–849 (in Chinese with English abstract).

    Google Scholar

    Yi W, Halliday AN, Alt JC, Lee DC, Rehkǎmper M, Garcia MO, Langmuir CH, Su YJ. 2000. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: Implications for chalcophile element fractionation in the Earth. Journal of Geophysical Research, 105(B8), 18927–18948. doi: 10.1029/2000JB900152.

    CrossRef Google Scholar

    Yierpan A, Konig S, Labidi J, Schoenberg R. 2019. Selenium isotope and S-Se-Te elemental systematics along the Pacific-Antarctic ridge: Role of mantle processes. Geochimica et Cosmochimica Acta, 29, 199–224. doi: 10.1016/j.gca.2019.01.028.

    CrossRef Google Scholar

    Zhang P, Sparks DL. 1990. Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environmental Science & Technology, 24, 1848–1856. doi: 10.1021/es00082a010.

    CrossRef Google Scholar

    Zhang DM, Fu CL, Liu GB, Xiao TB, Zeng JH, Ji QM, Xie LS. 2017. Distribution of available selenium in soil profiles of main type soils in Hainan Island. Jiangsu Agricultural Science, 45(24), 276–279 (in Chinese with English abstract).

    Google Scholar

    Zhu J, Wang N, Li S, Li L, Su H, Liu C. 2008. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Science of the Total Environment, 392, 252–261. doi: 10.1016/j.scitotenv.2007.12.019.

    CrossRef Google Scholar

    Zhu JM, Johnson TM, Clark SK, Zhu XK, Wang XL. 2014. Selenium redox cycling during weathering of se-rich shales: A selenium isotope study. Geochimica et Cosmochimica Acta, 126, 228–249. doi: 10.1016/j.gca.2013.11.004.

    CrossRef Google Scholar

    Ziemkiewicz PF, O’Neal M, Lovett RJ. 2011. Selenium leaching kinetics and in situ control. Mine Water and the Environment, 30, 141–150. doi: 10.1007/s10230-011-0154-4.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2110) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint