2021 Vol. 4, No. 2
Article Contents

Hui-qiang Yao, Yong-gang Liu, Yong Yang, Jin-feng Ma, Huo-Dai Zhang, Jiang-bo Ren, Xi-guang Deng, Gao-wen He, 2021. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: Constraints from Weijia Guyot, western Pacific Ocean, China Geology, 4, 288-298. doi: 10.31035/cg2020046
Citation: Hui-qiang Yao, Yong-gang Liu, Yong Yang, Jin-feng Ma, Huo-Dai Zhang, Jiang-bo Ren, Xi-guang Deng, Gao-wen He, 2021. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: Constraints from Weijia Guyot, western Pacific Ocean, China Geology, 4, 288-298. doi: 10.31035/cg2020046

Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: Constraints from Weijia Guyot, western Pacific Ocean

More Information
  • Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot, Magellan Seamounts in the Western Pacific Ocean are reported. Three substrate types were identified: Sediment, ferromanganese crust, and ferromanganese crust with a thin cover of sediment. The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients. The identified substrate spatial distributions correspond to acoustic backscatter intensity data, with regions of high intensity always including crust development and regions of low intensity always having sediment. Therefore, acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources, although further more work is needed to develop a practicable methodology.

  • 加载中
  • Ahmed KI, Demšar U. 2013. Improving seabed classification from multi-beam echo sounder (mbes) backscatter data with visual data mining. Journal of Coastal Conservation, 17(3), 559–577. doi: 10.1007/s11852-013-0254-3.

    CrossRef Google Scholar

    Asavin AM, Kubrakova IV, Mel’nikov ME, Tyutyunnik OA, Chesalova EI. 2010. Geochemical zoning in ferromanganese crusts of Ita Maitai Guyot. Geochemistry International, 48(5), 423–445. doi: 10.1134/S0016702910050010.

    CrossRef Google Scholar

    Chakraborty B, Kodagali V. 2004. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter. Geo-Marine Letters, 24(1), 8–13. doi: 10.1007/s00367-003-0153-y.

    CrossRef Google Scholar

    Chakraborty B, Pathak D, Sudhakar M, Raju YS. 1997. Determination of nodule coverage parameters using multibeam normal incidence echo characteristics: A study in the Indian Ocean. Marine Georesources and Geotechnology, 15(1), 33–48. doi: 10.1080/10641199709379933.

    CrossRef Google Scholar

    Cheng YS. 2014. Study of evaluation of Co-rich ferromanganese crust resources on seamounts in Northwest Pacific Ocean. Qingdao, Ocean University of China, Doctoral thesis, 1−144 (in Chinese with English Abstract).

    Google Scholar

    Cuff A, Anderson JT, Devillers R. 2015. Comparing surficial sediments maps interpreted by experts with dual-frequency acoustic backscatter on the Scotian Shelf, Canada. Continental Shelf Research, 110, 149–161. doi: 10.1016/j.csr.2015.10.004.

    CrossRef Google Scholar

    de Moustier C. 1985. Inference of manganese nodule coverage from sea beam acoustic backscattering data. Geophysics, 50(6), 989–1001. doi: 10.1190/1.1441976.

    CrossRef Google Scholar

    Dunlop KM, Jarvis T, Benoit-Bird KJ, Waluk CM, Caress DW, Thomas H, Smith KL. 2018. Detection and characterisation of deep-sea benthopelagic animals from an autonomous underwater vehicle with a multibeam echosounder: A proof of concept and description of data-processing methods. Deep Sea Research Part I: Oceanographic Research Papers, 134, 64–79. doi: 10.1016/j.dsr.2018.01.006.

    CrossRef Google Scholar

    He GW, Liang DH, Song CB, Wu SG, Zhou JP, Zhang XH. 2005. Determining the distribution boundary of cobalt-rich crusts of guyot by synchronous application of sub-bottom profiling and deep-sea video recording. Earth Science-Journal of China University of Geosciences, 30(4), 509–512 (in Chinese with English abstract).

    Google Scholar

    He GW, Ma WL, Song CB, Yang SX, Zhu BD, Yao HQ, Jiang XX, Cheng YS. 2011. Distribution characteristics of seamount cobalt-rich ferromanganese crusts and the determination of the size of areas for exploration and exploitation. Acta Oceanologica Sinica, 30(3), 63–75 (in Chinese with English abstract). doi: 10.1007/sl3131-011-0120-9.

    CrossRef Google Scholar

    Hein JR, Conrad TA, Dunham RE. 2009. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Marine Georesources and Geotechnology, 27(2), 160–176. doi: 10.1080/10641190902852485.

    CrossRef Google Scholar

    Hein JR, Koschinsky A, Bau M, Manheim FT, Kang JK, Roberts L, 2000. Cobalt-rich ferromanganese crusts in the pacific. In: Cronan DS (ed.). Handbook of Marine Mineral deposits, London, CRC Press, 239–279.

    Google Scholar

    Ierodiaconou D, Gaylard G, Young M, Rattray A, Schimel ACG, Monk J, Kennedy D, Diesing M. 2018. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Marine Geophysical Research, 39(1–2), 271–288. doi: 10.1007/s11001-017-9338-z.

    CrossRef Google Scholar

    Joo J, Kim J, Ko Y, Kim SS, Son J, Pak SJ, Ham DJ, Son SK. 2016. Characterizing geomorphological properties of Western Pacific seamounts for cobalt-rich ferromanganese crust resource assessment. Economic and Environmental Geology, 49(2), 121–134. doi: 10.9719/eeg.2016.49.2.121.

    CrossRef Google Scholar

    Kim J, Ko YT, Hyeong K, Moon JW. 2013. Geophysical and geological exploration of cobalt-rich ferromanganese crusts on a seamount in the Western Pacific. Economic and Environmental Geology, 46(6), 569–580. doi: 10.9719/EEG.2013.46.6.569.

    CrossRef Google Scholar

    Koppers AAP, Staudigel H, Pringle MS, Wijbrans JR. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochemistry, Geophysics, Geosystems, 4(10), 1089–1137. doi: 10.1029/2003GC000533.

    CrossRef Google Scholar

    Lacharite M, Brown C, Gazzola V. 2018. Multisource multibeam backscatter data: Developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Marine Geophysical Research, 49(1–2), 307–322. doi: 10.1007/s11001-017-9331-6.

    CrossRef Google Scholar

    Lee SH, Kim KH. 2004. Side-scan sonar characteristics and manganese nodule abundance in the clarion—clipperton fracture zones, Ne Equatorial Pacific. Marine Georesources and Geotechnology, 22(1–2), 103–114.

    Google Scholar

    Ma JF, Luo WD, Liu SX, Guo J. 2015. Analysisi on processiong technique of deep water multibeam backscatter strengh data. Journal of Geology, 39(4), 647–651 (in Chinese with English abstract).

    Google Scholar

    Ma Y, Magnuson AH, Varadan VK, Varadan VV. 1986. Acoustic response of manganese nodule deposits. Geophysics, 51(3), 689 (in Chinese with English abstract). doi: 10.1190/1.1442122.

    CrossRef Google Scholar

    Mel’nikova ME, Pletnevb SP, Sedyshevaa TE, Puninac TA, Khudikc VD. 2012. New data on the structure of the sedimentary section on the Ita Mai Tai Guyot (Magellan Seamounts, Pacific Ocean). Russian Journal of Pacific Geology, 6(3), 217–229. doi: 10.1134/S1819714012030037.

    CrossRef Google Scholar

    Sen A, Ondréas H, Gaillot A, Marcon Y, Augustin JM, Olu K. 2016. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep. Deep Sea Research Part I: Oceanographic Research Papers, 110, 33–49. doi: 10.1016/j.dsr.2016.01.005.

    CrossRef Google Scholar

    Thornton B, Asada A, Bodenmann A, Sangekar M, Ura T. 2013. Instruments and methods for acoustic and visual survey of manganese crusts. IEEE Journal of Oceanic Engineering, 38(1), 186–203. doi: 10.1109/JOE.2012.2218892.

    CrossRef Google Scholar

    Thornton B, Bodenmann A, Asada A, Sato T, Ura T. 2012. Acoustic and visual instrumentation for survey of manganese crusts using an underwater vehicle. 2012 Oceans, Hampton Roads, VA, 1–10. doi: 10.1109/OCEANS.2012.6404789.

    CrossRef Google Scholar

    Tyagi A, Sudhakar M, Chandvale G. 2009. Bulk polymetallic nodule collection in central Indian basin- implications of acoustic survey technologies for site selection and innovations to maximize nodule recovery Eighth ISOPE Ocean Mining Symposium. The International Society of Offshore and Polar Engineers (ISOPE), Chennai, India, 15–19.

    Google Scholar

    Usui A, Nishi K, Sato H, Nakasato Y, Thornton B, Kashiwabara T, Tokumaru A, Sakaguchi A, Yamaoka K, Kato S, Nitahara S, Suzuki K, Iijima K, Urabe T. 2017. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, Nw Pacific, at water depths of 800–5500 M. Ore Geology Reviews, 87, 71–87. doi: 10.1016/j.oregeorev.2016.09.032.

    CrossRef Google Scholar

    Usui A, Okamoto N. 2010. Geophysical and geological exploration of cobalt-rich ferromanganese crusts: An attempt of small-scale mapping on a Micronesian Seamount. Marine Georesources and Geotechnology, 28(3), 192–206. doi: 10.1080/10641190903521717.

    CrossRef Google Scholar

    Yang Y, He GW, Yang SX, Yao HQ. 2015. Classification of seafloor geological types of Caiwei Seamount. Acta Mineralogica Sinica, A1, 801–802 (in Chinese with English abstract).

    Google Scholar

    Yang Y, He GW, Zhu KC, Yao HQ, Ma JF, Yang SX, Deng XG. 2016. Classification of seafloor geological types of Qianyu seamount from mid-pacific seamounts using multibeam backscatter intensity data. Earth Science, 41(4), 718–728 (in Chinese with English abstract). doi: 10.3799/dqkx.2016.061.

    CrossRef Google Scholar

    Zhang GY, Tao CH, Li HM, Liu WY, Deng XM, Chen S. 2012. Seafloor clssification in hydrothermal field using multi-beam sonar. Marine Geology Frontiers, 28(7), 59–65 (in Chinese with English abstract).

    Google Scholar

    Zhang TW, Liu YY, Yang B, Zhao SY, Li ZG. 2016. Study on the active underwater acoustic positioning technology and its application in manned submersibles. Journal of Ocean Technology, 35(2), 56–59 (in Chinese with English abstract).

    Google Scholar

    Zhu F, Yu ZZ. 2015. Application of Em122 multibeam system in the ocean ploymetallic nodule resource survey. Marine Geology Frontiers, 31(9), 66–71 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1612) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint