2019 Vol. 2, No. 4
Article Contents

Jun Zhong, Chao-nan Hu, Hong-hai Fan, Yu-qi Cai, Qing Chen, Jin-yong Chen, Yan-ning Meng, 2019. A new type U-Th-REE-Nb mineralization related to albitite: A case study from the Chachaxiangka deposit in the northeastern Qaidam Basin of China, China Geology, 2, 422-438. doi: 10.31035/cg2018133
Citation: Jun Zhong, Chao-nan Hu, Hong-hai Fan, Yu-qi Cai, Qing Chen, Jin-yong Chen, Yan-ning Meng, 2019. A new type U-Th-REE-Nb mineralization related to albitite: A case study from the Chachaxiangka deposit in the northeastern Qaidam Basin of China, China Geology, 2, 422-438. doi: 10.31035/cg2018133

A new type U-Th-REE-Nb mineralization related to albitite: A case study from the Chachaxiangka deposit in the northeastern Qaidam Basin of China

More Information
  • The U-Th-REE-Nb (Ta)-polymetallic mineralization is generally related to either the silica-undersaturated syenites, the silica-oversaturated alkaline/peralkaline granites or igneous carbonatites. In this study, the authors report a new mineralization type, which is related to the magmatic-hydrothermal albitite (with mineral assemblage predominated by albite with volume content > 90%), as exemplified by the Chachaxiangka deposit in Qinghai Province of China. The Chachaxiangka deposit is the first albitite-related U-Th-REE-Nb deposit recognized in China and the mineralization can be divided into 3 types: the vein-type, the disseminated veinlet type and breccia type, of which the former 2 are predominant. Three mineralization stages can be identified according to the detailed mineralogical analyses, including the magmatic stage, main hydrothermal mineralization stage and post-ore stage. By comprehensive analyses of the mineralogical, major and trace element compositions, the authors suggest that the albitite vein is magmatic-hydrothermal in origin and both the magmatic evolution and overprint of the hydrothermal fluids play important roles in the formation of the albitite and related polymetallic mineralization. Phase separation between the silicate melt and carbonate/phosphate melt might take place in the magmatic stage, yet the immiscibility between the silicate melt and chloride-dominated fluids is the most important mechanism for the REE mineralization and also causes the Nb-Th re-mobilization and enrichment. The red color of the albitite aplite vein is an eye-catching prospecting mark in the field and more mineralization can be expected at depth and in the surrounding areas. The discovery of the new albitite type U-Th-REE-Nb mineralization give rise to new ideas during future U-Th-REE-Nb exploration, not only in the Qaidam-Altun belt, but also other areas across China.

  • 加载中
  • [1] Ayers JC, Zhang L, Luo Y, Peters TJ. 2012. Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochimica et Cosmochimica Acta, 96, 18–28. doi: 10.1016/j.gca.2012.08.027

    CrossRef Google Scholar

    [2] Azer MK, Stern RJ, Kimura JI. 2010. Origin of a late Neoproterozoic (605±13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. International Journal of Earth Sciences, 99, 245–267. doi: 10.1007/s00531-008-0385-1

    CrossRef Google Scholar

    [3] Blasy M, El-Baroudy AF, Kharbish SM. 2001. Geochemical characteristics of Wadi Tarr albitite, southeastern Sinai, Egypt. Egypt Journal of Geology, 42, 767–780.

    Google Scholar

    [4] Chakhmouradian AR, Zaitsev AN. 2012. Rare earth mineralization in igneous rocks: Sources and processes. Elements, 8, 347–353. doi: 10.2113/gselements.8.5.347

    CrossRef Google Scholar

    [5] Cuney M, Emetz A, Mercadier J, Mykchaylov V, Shunko V, Yuslenko A. 2012. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints. Ore Geology Reviews, 44, 82–106. doi: 10.1016/j.oregeorev.2011.09.007

    CrossRef Google Scholar

    [6] Dalou C, Koga KT, Hammouda T, Poitrasson F. 2009. Trace element partitioning between carbonatitic melts and mantle transition zone minerals: Implications for the source of carbonatites. Geochimica et Cosmochimica Acta, 73, 239–255. doi: 10.1016/j.gca.2008.09.020

    CrossRef Google Scholar

    [7] De la Roche H, Leterrier J, Grandclaude P, Marchal M. 1980. A classification of volcanic and plutonic rocks using R1–R2 diagrams and major-element analyses: its relation with current nomenclature. Chemical Geology, 29, 183–210. doi: 10.1016/0009-2541(80)90020-0

    CrossRef Google Scholar

    [8] Dill HG. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69, 417–561. doi: 10.1016/j.oregeorev.2015.02.022

    CrossRef Google Scholar

    [9] Du LT. 1996. Geochemical principles of HACONS-Re-discuss hydrothermalism and magmatism. Beijing, Science Press, 1‒229 (in Chinese).

    Google Scholar

    [10] Fan HR, Yang KF, Hu FF, Liu S, Wang KY. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geoscience Frontiers, 7, 335–344. doi: 10.1016/j.gsf.2015.11.005

    CrossRef Google Scholar

    [11] Fu CM, Quan ZG, Zhou W. 2011. Analysis on the character of U and REE mineralization and prospecting potential of Chachaxiangka deposit in Qinghai. Uranium Geology, 27(2), 103–107 (in Chinese with English abstract).

    Google Scholar

    [12] Gao XF, Xiao PX, Jia QZ. 2011. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of basalts from the margin of the Qaidam Basin. Acta Geologica Sinica, 85(9), 1452–1463 (in Chinese with English abstract).

    Google Scholar

    [13] Hu XS. 2009. A further understanding on genesis of Shuangwang gold deposit in Shannxi Province. Gold Science and Technology, 17(2), 17–23 (in Chinese with English abstract).

    Google Scholar

    [14] Hou ZQ, Tian SH, Xie YL, Yuan ZX, Yin SP, Yi LS, Fei HC, Zou TR, Bai G, Li X. 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkalic Complex in the eastern Indo-Asian collision zone, SW China. Ore Geology Reviews, 36, 65–89. doi: 10.1016/j.oregeorev.2009.03.001

    CrossRef Google Scholar

    [15] Keppler H, Wyllie PJ. 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 348, 531–533. doi: 10.1038/348531a0

    CrossRef Google Scholar

    [16] Lai SC, Deng JF, Zhao HL. 1996. Paleozoic ophiolites and its tectonic significance on north margin of Qaidam Basin. Geoscience, 10(1), 18–27 (in Chinese with English abstract).

    Google Scholar

    [17] Le Maitre RW. 2002. Igneous Rocks: A classification and Glossary of terms. Cambridge: Cambridge University Press, 1-126.

    Google Scholar

    [18] Li F, Wu ZL, Li BZ. 2007. Recognition on formation age of the Tanjianshan Group on the northern margin of the Qaidam Basin and its geological significance. Geotectonica et Metallogenia, 31(2), 226–233 (in Chinese with English abstract).

    Google Scholar

    [19] Lian K, Liu L, Chen Q. 2016. Geological characteristic and control factor in Chachaxiangka uranium deposit, Qinghai. Journal of East China University of Technology, 39(3), 245–252 (in Chinese with English abstract).

    Google Scholar

    [20] Linnen RL, Lichtervelde MV, Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280. doi: 10.2113/gselements.8.4.275

    CrossRef Google Scholar

    [21] Linnen RL, Samson IM, Williams-Jones AE, Chakhmouradian AR. 2014. Geochemistry of the Rare earth element, Nb, Ta, Hf and Zr deposit. Treatise on Geochemistry, 13, 538–568.

    Google Scholar

    [22] Liu SW, Xue CJ, Li Q, Zhu JX, Wang T, Zhao GB. 2005. Geology and geochemistry of Lower Paleozoic albitite in the Xunyang basin, South Qinling. Geology in China, 32(3), 424–433 (in Chinese with English abstract).

    Google Scholar

    [23] Liu L, Feng W, Chen Q. 2013. Uranium forming conditions and exploration prospect in the northeast margin of Qaidam. Journal of East China Institute of Technology (Nature Science), 36(3), 249–254 (in Chinese with English abstract).

    Google Scholar

    [24] Lu SN, Wang HC, Li HK, Yuan GB, Xin HT, Zheng JK. 2002. Redefinition of the “Dakendaban Group” on the northern margin of the Qaidam basin. Geological Bulletin of China, 21(1), 19–23 (in Chinese with English abstract).

    Google Scholar

    [25] Luo JH, Zhou YJ, Xu H, You J, Li YF, Che ZC. 2017. Late Devonian magmtogenic albitites in the Eastern Xunyang Basin of the South Qinling Orogen and their tectonic significance. Acta Geologica Sinica, 91(2), 302–314 (in Chinese with English abstract).

    Google Scholar

    [26] Marks MAW, Markl G. 2017. A global review on agpaitic rocks. Earth-Science Reviews, 173, 229–258. doi: 10.1016/j.earscirev.2017.06.002

    CrossRef Google Scholar

    [27] Migdisov AA, Williams-Jones AE, van Hinsberg V, Salvi S. 2011. An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim. Cosmochim. Acta, 75, 7426–7434. doi: 10.1016/j.gca.2011.09.043

    CrossRef Google Scholar

    [28] Migdisov AA, Williams-Jones AE. 2014. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987–997. doi: 10.1007/s00126-014-0554-z

    CrossRef Google Scholar

    [29] Migdisov AA, Williams-Jones AE, Brugger J, Caporuscio FA. 2016. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439, 13–42. doi: 10.1016/j.chemgeo.2016.06.005

    CrossRef Google Scholar

    [30] Norrish K, Hutton JT. 1969. An accurate X-ray spectrographic method for the analysis of a range of geological samples. Geochimica et Cosmochimica Acta, 33(4), 431–454. doi: 10.1016/0016-7037(69)90126-4

    CrossRef Google Scholar

    [31] Qu XM, Hou ZQ, Li YG. 2004. Melt components derived from a subducted slab in late Orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibeatan Plateau. Lithos, 74, 131–148. doi: 10.1016/j.lithos.2004.01.003

    CrossRef Google Scholar

    [32] Sarapaa O, Ani TA, Lahti SI, Lauri LS, Sarala P, Torppa A, Kontinen A. 2013. Rare earth exploration potential in Finland. Journal of Geochemical Exploration, 133, 25–41. doi: 10.1016/j.gexplo.2013.05.003

    CrossRef Google Scholar

    [33] Shimron AE. 1975. Petrogenesis of the Tarr albitite-carbonatite complex, Sinai Peninsula. Mineralogical Magazine, 40, 13–24. doi: 10.1180/minmag.1975.040.309.03

    CrossRef Google Scholar

    [34] Smith MP, Campbell LS, Kynichy J. 2014. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geology Reviews, 64, 459–474. doi: 10.1016/j.oregeorev.2014.03.007

    CrossRef Google Scholar

    [35] Song SG, Niu YL, Su L, Zhang C, Zhang LF. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129, 59–84. doi: 10.1016/j.earscirev.2013.11.010

    CrossRef Google Scholar

    [36] Sun SS, McDonough WF. 1989. Chemical and isotopic study of oceanic balsalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [37] Timofeev A, Williams-Jones AE. 2015. The origin of Niobium and Tantalum mineralization in the Nechalacho REE deposit, NWT, Canada. Economic Geology, 110, 1719–1735. doi: 10.2113/econgeo.110.7.1719

    CrossRef Google Scholar

    [38] Trofanenko J, Williams-Jones AE, Simandl GJ, Migdisov AA. 2016. The nature and origin of the REE mineralization in the Wicheeda carbonatite, British Columbia, Canada. Economic Geology, 111, 199–223. doi: 10.2113/econgeo.111.1.199

    CrossRef Google Scholar

    [39] Vasyukova OV, Williams-Jones AE. 2014. Fluoride–silicate melt immiscibility and its role in REE ore formation: Evidence from the Strange Lake rare metal deposit, Quebec-Labrador, Canada. Geochimica et Cosmochimica Acta, 139, 110–130. doi: 10.1016/j.gca.2014.04.031

    CrossRef Google Scholar

    [40] Vasyukova OV, Williams-Jones AE. 2016. The evolution of immiscible silicate and fluoride melts: Implications for REE ore-genesis. Geochimica et Cosmochimica Acta, 172, 205–224. doi: 10.1016/j.gca.2015.09.018

    CrossRef Google Scholar

    [41] Vasyukova OV, Williams-Jones AE, Blamey NJF. 2016. Fluid evolution in the Strange Lake granitic pluton, Canada: Implications for HFSE mobilization. Chemical Geology, 444, 83–100. doi: 10.1016/j.chemgeo.2016.10.009

    CrossRef Google Scholar

    [42] Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta, 79, 20–40. doi: 10.1016/j.gca.2011.11.035

    CrossRef Google Scholar

    [43] Wang HC, Lu SN, Yuan GB, Xin HT, Zhang BH, Wang QH, Tian Q. 2003. Tectonic setting and age of the “Tanjianshan Group” on the northern margin of the Qaidam basin. Geological Bulletin of China, 22(7), 487–493 (in Chinese with English abstract).

    Google Scholar

    [44] Xie YL, Li YX, Hou ZQ, Cooke DR, Danyushevsky L, Dominy SC, Yin SP. 2015. model for carbonatite hosted REE mineralisation-the Mianning-Dechang REE belt,Western Sichuan Province, China. Ore Geology Reviews, 70, 595–612. doi: 10.1016/j.oregeorev.2014.10.027

    CrossRef Google Scholar

    [45] Xie YL, Hou ZQ, Goldfarb RJ, Guo X, Wang L. 2016. Chapter 6 Rare earth element deposits in China. Economic Geology, 18, 115–136.

    Google Scholar

    [46] Xu C, Campbell IH, Allen CM. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105, 118–128. doi: 10.1016/j.lithos.2008.03.002

    CrossRef Google Scholar

    [47] Zhang JX, Wan YS, Xu ZQ, Yang JS, Meng FC. 2001. Discovery of basic granulite and its formation age in Delingha area, North Qaidam Mountains. Acta Petrologica Sinica, 17(3), 453–458 (in Chinese with English abstract).

    Google Scholar

    [48] Zhang ZH, Mao JW, Li XF. 2004. Geology, geochemistry and metallogenic mechanism of Shuangwang breccias type gold deposit. Mineral Deposits, 23(2), 241–252 (in Chinese with English abstract).

    Google Scholar

    [49] Zhang XP, Wang QF, Hui J, Chang X, Tong HK. 2015. Chemical characteristics of volcanic rocks from the Tanjianshan Group on the northern margin of the Qaidam basin and its tectonic environment. Journal of Mineralogy and Petrology, 35(1), 18–26 (in Chinese with English abstract).

    Google Scholar

    [50] Zhao RY, Jiang CY, Chen X, Wang G, Chen YJ, Nie L. 2015. Geological features of albitite veins and its relationship with uranium metallogenic in the middle Longshoushan Mountains of Gansu Province. Geology and Exploration, 51, 1069–1078 (in Chinese with English abstract).

    Google Scholar

    [51] Zhong J, Chen YJ, Pirajno F, Chen J, Li J, Qi JP, Li N. 2014. Geology, geochronology, fluid inclusion and H-O isotope geochemistry of the Luoboling Porphyry Cu-Mo deposit, Zijinshan Orefield, Fujian Province, China. Ore Geology Reviews, 57, 61–77. doi: 10.1016/j.oregeorev.2013.09.004

    CrossRef Google Scholar

    [52] Zhong J, Fan HH, Gu DZ, Wang SY, Chen JY, Shi CH, Li HQ. 2016. Major and trace element migration and metallogenic processes of the Xinshuijing U-Th deposit in the Longshoushan metallogenic belt, Gansu Province. Geology in China, 43(4), 1393–1408 (in Chinese with English abstract).

    Google Scholar

    [53] Zhong J, Chen YJ, Pirajno F. 2017. Geology, geochemistry and tectonic settings of the Molybdenum deposits in South China: A review. Ore Geology Reviews, 81, 829–855. doi: 10.1016/j.oregeorev.2016.04.012

    CrossRef Google Scholar

    [54] Zhong J, Chen Q, Fan HH, Shi CH. 2018. Geological characteristics and ore genesis of the Chachaxiangka U-Th-Nb-REE deposit in the northeastern Qaidam Basin: A new mineralization type related to albitite. Earth Science Frontiers, 25(5), 222–236 (in Chinese with English abstract).

    Google Scholar

    [55] Zhong J, Wang SY, Gu DZ, Cai YQ, Fan HH, Shi CH, Hu CN. 2019. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan U metallogenic belt, NW China: Constraint on the ore-forming process. Ore Geology Reviews, 10.1016/j.oregeorev.2019.103214.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1762) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint