Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2025 Vol. 13, No. 4
Article Contents

Ali Md. Hossain. 2025. Development of a model to estimate groundwater recharge. Journal of Groundwater Science and Engineering, 13(4): 406-422. doi: 10.26599/JGSE.2025.9280062
Citation: Ali Md. Hossain. 2025. Development of a model to estimate groundwater recharge. Journal of Groundwater Science and Engineering, 13(4): 406-422. doi: 10.26599/JGSE.2025.9280062

Development of a model to estimate groundwater recharge

More Information
  • Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management. This paper presents M-RechargeCal, a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches: the Water Balance (WB) method and Water Table Fluctuation (WTF) method. In the WB approach, the catchment area is divided into seven land-use categories, each representing distinct recharge characteristics. The tool includes eighteen different reference Evapotranspiration (ET0) estimation methods, accommodating varying levels of climatic input data availability. Additional required inputs include crop coefficients for major crops and Curve Numbers (CN) for specific land-use types. The WTF approach considers up to three aquifer layers with different specific yields (for unconfined aquifer) or storage coefficient (for confined aquifer). It also takes into account groundwater withdrawal (draft) and lateral water movement within or outside the aquifer system. M-RechargeCal is process-based and does not require calibration. Its performance was evaluated using six datasets from humid-subtropical environments, demonstrating reliable results (R2 = 0.867, r = 0.93, RE= 10.6%, PMARE= 9.8, ENS = 0.93). The model can be applied to defined hydrological or hydrogeological units such as watersheds, aquifers, or catchments, and can be used to assess the impacts of land-use/land-cover changes on hydrological components. However, it has not yet been tested in arid regions. M-RechargeCal provides modelers and planners with a practical, accessible tool for recharge estimation to support groundwater modeling and water resource planning. The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email.

  • 加载中
  • Abdollahi K, Bashir I Batelaan O. 2012. Wet Spass Graphical User Interface. Version 31-05-2012, Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Belgium.

    Google Scholar

    Abtew W. 1996. Evapotranspiration measurements and modeling for three wetland systems in south Florida. Journal of American Water Resources Association, 32: 465−473. DOI: 10.1111/j.1752-1688.1996.tb04044.x.

    CrossRef Google Scholar

    Addiscott TM, Whitemore AP. 1987. Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autum, winter and spring. Journal of Agricultural Science, Cambridge, 109: 141–157.

    Google Scholar

    Allen RG, Pereira LS, Raes D, et al. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome: 300.

    Google Scholar

    Ali MH, Abustan I. 2014. A new novel index for evaluating model performance. Journal of Natural Resource and Development, 04: 1−9.

    Google Scholar

    Akbar MJ, Al-Shama'a AM. 2023. Estimation of natural groundwater recharge in AltunKopri Basin NE Iraq. Iraqi Geological Journal, 350-360. DOI: 10.46717/igj.56.2F.24ms-2023-12-30

    Google Scholar

    Akurugu BA, Seidenfaden IK, Obuobie E, et al. 2025. Groundwater recharge estimation from multiple independent methods in the fractured hard rock aquifers in the Densu River Basin, Ghana. Sustain. Water Resource Management, 11: 10. DOI: 10.1007/s40899-024-01178-0.

    Google Scholar

    Ali MH. 2016. Groundwater Recharge (Chapter 3). In: Principles and Practices of Water Resources Development and Management. Nova Science Publishers, Inc, NY, USA.

    Google Scholar

    Ali MH. 2017. Quantifying natural groundwater recharge using tracer and other techniques. Asian Journal of Environment & Ecology, 5(1): 1−12. DOI: 10.9734/AJEE/2017/36811.

    CrossRef Google Scholar

    Ali MH, Mubarak S. 2017. Approaches and methods of quantifying natural groundwater recharge – A review. Asian Journal of Environment & Ecology, 5(1): 1−27. DOI: 10.9734/AJEE/2017/36987.

    CrossRef Google Scholar

    Ali MH, Hasanuzzaman M, Islam MA, et al. 2022. Groundwater recharge estimation at Barind Area, Bangladesh for sustainable groundwater management: Application of multiple methods. European Journal of Environment and Earth Sciences, 3(6): 23−29. DOI: 10.24018/ejgeo. 2022.3. 6.312.

    CrossRef Google Scholar

    Banimahd SA, Khalili D, Zand-Parsa S, et al. 2017. Development of a simulation model for estimation of potential recharge in a Semi-arid Foothill Region. Water Resources Management, 31: 1535−1556. DOI: 10.1007/s11269-017-1593-x.

    CrossRef Google Scholar

    Bronswijk JJB. 1988. Modeling of water balance, cracking and subsidence of clay soils. Journal of Hydrology, 97: 199−212. DOI: 10.1016/0022-1694(88)90115-1.

    CrossRef Google Scholar

    Bruin de HAR, Lablans WN. 1998. Reference crop evapotranspiration determined with a modified Makkink equation. Hydrological Processes, 12(7): 1053−1062. DOI: 10.1002/(SICI)1099-1085(19980615)12:7<1053::AID-HYP639>3.0.CO;2-E.

    CrossRef Google Scholar

    Cartwright I, Cendón D, Currell M, et al. 2017.  A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations. Journal of Hydrology, 555: 797−811. DOI: 10.1016/j.jhydrol.2017.10.053.

    CrossRef Google Scholar

    Cartwright I, Morgenstern U, Hofmann H, et al. 2020. Comparisons and uncertainties of recharge estimates in a temperate alpine catchment. Journal of Hydrology, 590: 125558. DOI: 10.1016/j.jhydrol.2020.125558.

    CrossRef Google Scholar

    Crosbie RS, Peeters LJM, Herron N, et al. 2018. Estimating groundwater recharge and its associated uncertainty: Use of regression kriging and the chloride mass balance method. Journal of Hydrology, 561: 1063−1080. DOI: 10.1016/j.jhydrol.2017.08.003.

    CrossRef Google Scholar

    Dandekar AT, Singh DK, Sarangi A, et al. 2018. Modelling vadose zone processes for assessing groundwater recharge in semi-arid region. Current Science, 114(3): 608−618. DOI: 10.18520/cs/v114/i03/608-618.

    CrossRef Google Scholar

    Danielescu S. 2022. Groundwater recharge estimation tool (RECHARGE BUDDY) - A web-based tool. Reference Manual. Available at https://rbuddy.hydrotools.tech. (Accessed on 7 Sept. 2023

    Google Scholar

    De Vries JJ, Simmers I. 2002.  Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10: 5−17. DOI: 10.1007/s10040-001-0171-7.

    CrossRef Google Scholar

    Delottier H, Pryet A, Lemieux JM, et al. 2018. Estimating groundwater recharge uncertainty from joint application of an aquifer test and the water-table fluctuation method. Hydrogeology Journal, 26(7): 2495−2505. DOI: 10.1007/s10040-018-1790-6.

    CrossRef Google Scholar

    Donmoyer SJ, Killian CD, Conlon MD, et al. 2023. Estimates of baseflow, runoff, and groundwater recharge based on streamflow-hydrograph methods: Pennsylvania: US Geological Survey data release. DOI: 10.5066/P9OGVKKQ.

    Google Scholar

    Doorenbos J, Pruitt WO. 1977. Crop Water requirement: Food and agriculture organization of the United Nations. FAO Irrigation and Drainage Paper 24, Rome, 144.

    Google Scholar

    Droogers P, Allen RG. 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage System, 16: 33−45. DOI: 10.1061/(ASCE)0733-9437(2002)128:1(1).

    CrossRef Google Scholar

    Fauzia SL, Rahman A, Ahmed S. 2021. Distributed groundwater recharge potentials assessment based on GIS model and its dynamics in the crystalline rocks of South India. Scientific Report, 11: 11772. DOI: 10.1038/s41598-021-90898-w.

    CrossRef Google Scholar

    Ferede M, Haile AT, Walker D, et al. 2020. Multi-method groundwater recharge estimation at Eshito micro-watershed, Rift Valley Basin in Ethiopia. Hydrological Sciences Journal, 65(9): 1596−1605. DOI: 10.1080/02626667.2020.1762887.

    CrossRef Google Scholar

    Fu G, Crosbie RS, Barron O, et al. 2019. Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors. Journal of Hydroogy, 568: 816−834. DOI: 10.1016/j.jhydrol.2018.11.022.

    CrossRef Google Scholar

    Gee GW, Hillel D. 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrological Process, 2: 255−266. DOI: 10.1002/hyp.3360020306.

    CrossRef Google Scholar

    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59: e2023WR034920. DOI: 10.1029/2023WR034920.

    CrossRef Google Scholar

    Halford K, Mayer GC. 2000. Problems associated with estimating ground water discharge and recharge from stream-discharge records. Ground Water, 38(3): 331−342. DOI: 10.1111/j.1745-6584.2000.tb00218.x.

    CrossRef Google Scholar

    Hansen S. 1984. Estimation of potential and actual evapotranspiration. Nordic Hydrology, 15: 205−212. DOI: 10.2166/nh.1984.0017.

    CrossRef Google Scholar

    Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1: 96−99. DOI: 10.13031/2013.26773.

    CrossRef Google Scholar

    Howard KWF, Lloyd JW. 1979. The sensitivity of parameters in the Penman evaporation equations and direct recharge balance. Journal of Hydrology, 41(3-4): 329−344. DOI: 10.1016/0022-1694(79)90069-6.

    CrossRef Google Scholar

    Huang X, Gao L, Zhang N, et al. 2023. A top-down deep learning model for predicting spatiotemporal dynamics of groundwater recharge. Environmental Modeling and Software, 167: 105778. DOI: 10.1016/j.envsoft.2023.105778.

    CrossRef Google Scholar

    Indhanu N, Chub-Uppakarn TT. 2025. Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the Hat Yai Basin. Journal of Hydrology: Regional Studies, 57: 102097. DOI: 10.1016/j.ejrh.2024.102097.

    CrossRef Google Scholar

    Irvine DJ, Cartwright I. 2022.  CMBEAR: Python-based recharge estimator using the chloride mass balance method in Australia. Groundwater, 60: 418−425. DOI: 10.1111/gwat.13161.

    CrossRef Google Scholar

    Jensen ME, Haise HR. 1963. Estimating evapotranspiration from solar radiation. Journal of the Irrigation & Drainage Division, Proceeding of the ASCE, 89: 15–41.

    Google Scholar

    Kambale JB, Singh DK, Sarangi A. 2017. Impact of climate change on groundwater recharge in a semi-arid region of northern India. Applied Ecology and Environmental Research, 15(1): 335−362. DOI: 10.15666/aeer/1501_335362.

    CrossRef Google Scholar

    King AC, Raiber M, Cox ME, et al. 2017. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia). Hydrogeology Journal, 25: 1759. DOI: 10.1007/s10040-017-1565-5.

    CrossRef Google Scholar

    Koch J, Berger H, Henriksen HJ. 2019. Modelling of the shallow water table at high spatial resolution using random forests. Hydrology and Earth System Science, 23: 4603−4619. DOI: 10.5194/hess-23-4603-2019.

    CrossRef Google Scholar

    Lanini S, Caballero Y. 2016. Groundwater recharge and associated uncertainty estimation combining multi-method and multi-scale approaches, Proc. 8th International Congress on Environmental Modelling and Software, Toulouse, France.

    Google Scholar

    Li H, Cai Y, Min M, et al. 2024. To investigate the impact of land use change on the potential groundwater recharge on Hillslope with deep loess deposits. Land Degradation and Development, 36(2): 363−374. DOI: 10.1002/ldr.5364.

    CrossRef Google Scholar

    Loague K, Green RE. 1991. Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7: 51−73.

    Google Scholar

    Lobit P, Gomez-Tagle A, Bautista F, et al. 2018. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: Development and validation of new methods for Mexico. Part II: Radiation. Theoretical and Applied Climatology, 133: 799−810. DOI: 10.1007/s00704-017-2212-8.

    CrossRef Google Scholar

    Makkink GF. 1957. Testing the Penman formula by means of lysimeters. Journal of the Institute of Water Engineering, 11: 277−288.

    Google Scholar

    Mauricio OG, Preetha P, Kumar M, et al. 2023. Comparison of data-driven groundwater recharge estimates with a process-based model for a river basin in the Southeastern USA. Journal of Hydrologic Engineering, 28(7): 04023019. DOI: 10.1061/JHYEFF.HEENG-5882.

    Google Scholar

    Mojid MA, Talukder MSU, Ahmed M, et al. 1994. Recharge and depletion characteristics of Muktagacha aquifer, Mymensingh. Bangladesh Journal of Agricultural Science, 21(1): 49–59.

    Google Scholar

    Mintz Y, Walker GK. 1993. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature. Journal of Applied Meteorology and Climatology, 1305–1334. DOI: 10.1175/1520-0450(1993)032<1305:GFOSMA>2.0.CO;2.

    Google Scholar

    Moeck C, Grech-Cumbo N, Podgorski J, et al. 2020. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 717: 137042. DOI: 10.1016/j.scitotenv.2020.137042.

    CrossRef Google Scholar

    Naik SRS, Masilamani P, Kushawaha J, et al. 2024. Investigating the impact of land use land cover change on groundwater level dynamics in the Koraiyar watershed, Coimbatore District, Tamil Nadu, India. Frontiers in Water, Sec. Water Resource Management, 6: 1339613. DOI: 10.3389/frwa.2024.1339613.

    Google Scholar

    Nekooei M, Koupai JA, Eslamian S, et al. 2020. Estimation of natural and artificial recharge of Shahreza Plain groundwater in Isfahan using CRD and Hantush Models. American Journal of Engineering and Applied Sciences, 13(2): 283−295, DOI: 10.3844/ajeassp.2020.283.295.

    CrossRef Google Scholar

    Oostindie K, Bronswijk JJB. 1992. FLOCR – A simulation model for the calculation of water balance, cracking and surface subsidence of clay soils. Report 47, Agricultural Research Department; The Winand staring Centre for Integrated Land, Soil and Water Research, Wageningen (The Netherlands).

    Google Scholar

    Priestley CHB, Taylor RJ. 1972. On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100: 81−92. DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    CrossRef Google Scholar

    Redda MA, Kebede S, Birhanu B, et al. 2024. Estimating groundwater recharge rates in the Upper Awash Basin, Ethiopia under different combinations of model complexity and objective functions. Hydrology Research, 55(3): 263−279. DOI: 10.2166/nh.2024.059.

    CrossRef Google Scholar

    Rushton KR. 1988. Numerical and conceptual models for recharge estimation in arid and semi-arid zones. In: Simmers I, Ed., Estimation of Natural Groundwater Recharge, NATO ASI Series C 222, Reidel, Dordrecht, 223-238. DOI: 10.1007/978-94-015-7780-9_14.

    Google Scholar

    Rushton KR, Zaman MA, Hasan M. 2020. Monitoring groundwater heads and estimating recharge in multi-aquifer systems illustrated by an irrigated area in north-west Bangladesh. Sustainable Water Resources Management, 6: 22. DOI: 10.1007/s40899-020-00382-y.

    CrossRef Google Scholar

    Smith DI, Stopp P. 1978. The River Basin: An introduction to the study of hydrology. Cambridge University Press: Cambridge, UK.

    Google Scholar

    Stafford MJ, Holländer HM, Dow K. 2022. Estimating groundwater recharge in the assiniboine delta aquifer using HYDRUS-1D. Agricultural Water Management. 267(1): 107514. DOI: 10.1016/j.agwat.2022.107514

    Google Scholar

    Sun J, Wang Li WB, et al. 2023. Variations and controls on groundwater recharge estimated by combining the water-table fluctuation method and Darcy's law in a loess tableland in China. Hydrogeology Journal, 32(2): 379-394. DOI: 10.1007/s10040-023-02722-6

    Google Scholar

    Tonkul S, Baba A, Şimşek C, et al. 2019. Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey. Environental Monitoring and Assessment, 191: 610. DOI: 10.1007/s10661-019-7792-6.

    CrossRef Google Scholar

    Trajkovic S. 2007. Hargreaves versus Penman-Monteith under humid conditions. Journal of Irrigation and Drainage Engineering, 133: 38−42. DOI: 10.1061/(ASCE)0733-9437(2007)133:1(38).

    CrossRef Google Scholar

    Turc L. 1961. Water requirements assessment of irrigation, potential evapotranspiration: Simplified and updated climatic formula. Annales Agronomiques, 12: 13−49. (In French

    Google Scholar

    USDA-SCS. 1985. National Engineering handbook, Section 4 – hydrology. Washington DC, USDA-SCS.

    Google Scholar

    Verma K, Manisha M, Santrupt RM, et al. 2023. Assessing groundwater recharge rates, water quality changes, and agricultural impacts of large-scale water recycling. Science of the Total Environment, 877: 162869. DOI: 10.1016/j.scitotenv.2023.162869.

    CrossRef Google Scholar

    Walker D, Parkin G, Schmitter P, et al. 2019. Insights from a multi-method recharge estimation comparison study. Groundwater, 57: 245−258. DOI: 10.1111/gwat.12801.

    CrossRef Google Scholar

    Walter IA, Allen RG, Elliott RL, et al. 2000. The ASCE standardized reference evapotranspiration equation. In: Proc. Watershed Management and Operations Management, 1-11. DOI: 10.1061/40499(2000)126.

    Google Scholar

    West C, Reinecke R, Rosolem R, et al. 2023.  Ground truthing global-scale model estimates of groundwater recharge across Africa. Science of the Total Environment, 858: 159765. DOI: 10.1016/j.scitotenv.2022.159765.

    CrossRef Google Scholar

    Xu P, Weng B, Gong X, et al. 2024. Estimation of shallow groundwater recharge in central Qinghai-Tibet Plateau by combining unsaturated zone simulation and improved water table fluctuation method. Journal of Hydrology, 630: 130689. DOI: 10.1016/j.jhydrol.2024.130689.

    CrossRef Google Scholar

    Yin L, Hu G, Huang J, et al. 2011. Groundwater-recharge estimation in the Ordos Plateau, China: Comparison of methods. Hydrogeology Journal, 19: 1563−1575. DOI: 10.1007/s10040-011-0777-3.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(80) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint