Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 3
Article Contents

Hu Jing, Liu Yan-guang, Wang Xin, Zhang Ying-nan, Wei Mei-hua. 2024. Progress and prospect of mid-deep geothermal reinjection technology. Journal of Groundwater Science and Engineering, 12(3): 321-338. doi: 10.26599/JGSE.2024.9280024
Citation: Hu Jing, Liu Yan-guang, Wang Xin, Zhang Ying-nan, Wei Mei-hua. 2024. Progress and prospect of mid-deep geothermal reinjection technology. Journal of Groundwater Science and Engineering, 12(3): 321-338. doi: 10.26599/JGSE.2024.9280024

Progress and prospect of mid-deep geothermal reinjection technology

More Information
  • Mid-deep geothermal reinjection technology is crucial for the sustainable development of geothermal resources, which has garnered significant attention and rapid growth in recent years. Currently, various geothermal reinjection technologies lag behind, lacking effective integration to address issues like low reinjection rates and thermal breakthrough. This paper reviews the basic principles and development history of mid-deep geothermal reinjection technology, focusing on various technical methods used in the process and analyzing their applicability, advantages, and disadvantages under different geological conditions. It highlights the unique challenges posed by deep geothermal resources, including high temperature, high pressure, high stress, chemical corrosion, and complex geological structures. Additionally, it addresses challenges in equipment selection and durability, system stability and operation safety, environmental impact, and sustainable development. Finally, the paper explores future directions for mid-deep geothermal reinjection technology, highlighting key areas for further research and potential pathways for technological innovation. This comprehensive analysis aims to accelerate the advancement of geothermal reinjection technology, offering essential guidance for the efficient reinjection and sustainable development of geothermal resources.

  • 加载中
  • Agoun A. 2000. Exploitation of the continental intercalaire aquifer at the Kebili geothermal field, Tunisia. United Nations University: 1−28.

    Google Scholar

    Allen A, Milenic D. 2003. Low-enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys. Applied Energy, 74(1): 9−19. DOI:10.1016/S0306-2619(02)00126-5.

    CrossRef Google Scholar

    Allis R, Currie S, Leaver J, et al. 1985. Results of injection testing at Wairakei geothermal field, New Zealand. Trans. GRC: 289−294.

    Google Scholar

    Allis RG. 1981. Changes in heat flow associated with exploitation of Wairakei Geothermal Field, New Zealand. New Zealand Journal of Geology and Geophysics, 24(1): 1−19. DOI:10.1080/00288306.1981.10422694.

    CrossRef Google Scholar

    Aoyama K, Mogi T, Suzuki K, et al. 2022. Magnetotelluric study on a vapor-dominated geothermal reservoir in the Matsukawa Area, Japan. Geothermics, 101: 102362. DOI:10.1016/j.geothermics.2022.102362.

    CrossRef Google Scholar

    Axelsson G. 2013. Tracer tests in geothermal resource management. EPJ Web of Conferences, 50: 02001. DOI:10.1051/epjconf/20135002001.

    CrossRef Google Scholar

    Axelsson G, Arnaldsson A, Berthet JCC, et al. 2015. Renewability assessment of the Reykjanes geothermal system, SW-Iceland. Proceedings of the World Geothermal Congress.

    Google Scholar

    Bett G, Yasuhiro F. 2023. Integrated geological assessment and numerical simulation for Olkaria's East and Southeast geothermal fields. Geothermics, 109: 102652. DOI:10.1016/j.geothermics.2023.102652.

    CrossRef Google Scholar

    Bing G. 2021. Experimental study on pumping from a groundwater ground source heat pump recharge well in Tianjin. Gas & Heat, 41(07): 1−3; 41. DOI:10.13608/j.cnki.1000-4416.2021.07.001.

    CrossRef Google Scholar

    Božiček B, Lojen S, Dolenec M, et al. 2017. Impacts of deep groundwater monitoring wells on the management of deep geothermal Pre-Neogene aquifers in the Mura-Zala Basin, Northeastern Slovenia. Groundwater for Sustainable Development, 5: 193−205. DOI:10.1016/j.gsd.2017.07.001.

    CrossRef Google Scholar

    Brodsky EE, Lajoie LJ. 2013. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field. Science, 341(6145): 543−546. DOI:10.1126/science.1239213.

    CrossRef Google Scholar

    Cao Q, Fang C, Li Y, et al. 2021. Development status of geothermal reinjection at home and abroad and its enlightenment. Oil Drilling & Production Technology, 43(02): 203−211. DOI:10.13639/j.odpt.02.011.

    CrossRef Google Scholar

    Cao V, Schaffer M, Taherdangkoo R, et al. 2020. Solute reactive tracers for hydrogeological applications: A short review and future prospects. Water, 12(3): 653−674. DOI:10.3390/w12030653.

    CrossRef Google Scholar

    Cheng L, Luo ZF, Xie YZ, et al. 2023. Numerical simulation and analysis of damage evolution and fracture activation in enhanced tight oil recovery using a THMD coupled model. Computers and Geotechnics, 155: 105244. DOI:10.1016/j.compgeo.2023.105244.

    CrossRef Google Scholar

    Cheng W, Liu J, Chen H. 2011. Simulation research on reinjection temperature field of geothermal doublet well. World Geology, 30(03): 486−492. (in Chinese)

    Google Scholar

    Chitgar N, Hemmati A, Sadrzadeh M. 2023. A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy. Energy Conversion and Management, 286: 117072. DOI:10.1016/j.enconman.2023.117072.

    CrossRef Google Scholar

    Diaz AR, Kaya E, Zarrouk SJ. 2016. Reinjection in geothermal fields − A worldwide review update. Renewable and Sustainable Energy Reviews, 53: 105−162. DOI:10.1016/j.rser.2015.07.151.

    CrossRef Google Scholar

    Du L, Zhao L, Qiao Y, et al. 2019. Study on the influence of fracture orientation and injection velocity on the micro seepage law of reinjection water in fracture geothermal reservoir. Shandong Chemical Industry, 48(20): 139−141; 146. (in Chinese) DOI:10.19319/j.cnki.issn.1008-021x.2019.20.052.

    CrossRef Google Scholar

    Einarsson SS, Vides A, Cuellar G. 1975. Disposal of geothermal waste water by reinjection. 2nd United Nations Symposium on the Development of Geothermal Resources, 2: 1349−1363.

    Google Scholar

    Eysteinsson H. 2000. Elevation and gravity changes at geothermal fields on the Reykjanes Peninsula, SW Iceland. Proceedings World Geothermal Congress: 559−564.

    Google Scholar

    Fan Y, Duan Z, Yang Y, et al. 2023. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir: A case study of Jiyang Depression. Hydrogeology & Engineering Geology: 1−9. DOI:10.16030/j.cnki.issn.1000-3665.202301033.

    Google Scholar

    Finger JT, Blankenship DA. 2012. Handbook of best practices for geothermal drilling. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). DOI:10.2172/1325261.

    Google Scholar

    Fu GQ, Li ZQ, Zhang QJ, et al. 2024. The applications of WFEM in the exploration of medium-depth geothermal resources. Energies, 17(8): 1904. DOI: 10.3390/en17081904.

    Google Scholar

    Hanano M. 2003. Sustainable steam production in the Matsukawa geothermal field, Japan. Geothermics, 32(3): 311−324. DOI:10.1016/ s0375-6505(03)00023-3.

    CrossRef Google Scholar

    He ZL, Feng JY, Luo J, et al. 2023. Distribution, exploitation, and utilization of intermediate-to-deep geothermal resources in eastern China. Energy Geoscience, 4(4): 100187. DOI:10.1016/j.engeos.2023.100187.

    Google Scholar

    Jia Z, Zhang F, Yang Z, et al. 2015. Application of perforation technology in the porous geothermal reinjection well. Ground water, 37(02): 106−109. (in Chinese).

    Google Scholar

    Jiang G, Cheng W, Wang L, et al. Application effect analysis of large diameter gravel filling technology for sandstone geothermal reinjection well. Geothermal Energy Development and Utilization and Low Carbon Economy Seminar -- the 14th session of the 13th Annual Meeting of the China Association for Science and Technology, 2011 Tianjin. 213−218.

    Google Scholar

    Jin WC, Atkinson TA, Doughty C, et al. 2022. Machine-learning-assisted high-temperature reservoir thermal energy storage optimization. Renewable Energy, 197: 384−397. DOI:10.1016/j.renene.2022.07.118.

    CrossRef Google Scholar

    Kamila Z, Kaya E, Zarrouk SJ. 2021. Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics, 89: 1−88. DOI:10.1016/j.geothermics.2020.101970.

    CrossRef Google Scholar

    Kaspereit D, Mann M, Sanyal S, et al. 2016. Updated conceptual model and reserve estimate for the Salton Sea geothermal field, Imperial Valley, California. Geotherm. Res. Council Trans, 40: 57−66.

    Google Scholar

    Kaya E, Zarrouk SJ, O'Sullivan MJ. 2011. Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable Energy Reviews, 15(1): 47−68. DOI:10.1016/j.rser.2010.07.032.

    CrossRef Google Scholar

    Kong Y, Pang Z, Shao H, et al. 2020. Cost-oriented optimization on the multi-well layout for geothermal production and reinjection. Science & Technology for Development, 16(Z1): 316−322. (in Chinese)

    Google Scholar

    Kuo CH, Song SR, Rose P, et al. 2018. Reactive tracer experiments in a low temperature geothermal field, Yilan, Taiwan. Geothermics, 74: 298−304. DOI:10.1016/j.geothermics.2017.11.017.

    CrossRef Google Scholar

    Li HL, Kang J, Tong J, et al. State-of-art on clogging mechanism of geothermal tall-water reinjection. 2021 Science and Technology Annual Conference of Chinese Society of Environmental Sciences - Environmental Engineering Technology Innovation and Application Branch Venue, 2021 Tianjin. 782−790. (in Chinese) DOI:10.26914/c.cnkihy.2021.022020.

    Google Scholar

    Li ST, Wen DG, Feng B, et al. 2023. Numerical optimization of geothermal energy extraction from deep karst reservoir in North China. Renewable Energy, 202: 1071−1085. DOI:10.1016/j.renene.2022.12.016.

    CrossRef Google Scholar

    Li TX, Cai YF, Liu YG, et al. 2020. Tracer test and simulation of thermal energy storage in carbonate rocks of the Xian County geothermal field. Earth Science Frontiers, 27(01): 152−158. DOI:10.13745/j.esf.2020.1.16.

    CrossRef Google Scholar

    Liu GH, Wang GL, Zhao ZH, et al. 2020. A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China. Renewable Energy, 155: 484−499. DOI:10.1016/j.renene.2020.03.156.

    CrossRef Google Scholar

    Liu Y, Liu G, Zhao Z, et al. 2019a. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain. Energy Exploration & Exploitation, 37(2): 849−864. DOI:10.1177/014459871882 2401.

    CrossRef Google Scholar

    Liu YG, Long XT, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs. Geothermics, 105: 102533. DOI:10.1016/j.geothermics.2022.102533.

    CrossRef Google Scholar

    Lopez S, Hamm V, Le Brun M, et al. 2010. 40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geothermics, 39(4): 339−356. DOI:10.1016/j.geothermics.2010.09.005.

    CrossRef Google Scholar

    Ma XM, Chen Y, Qi LH. 2014. Research and application of gas-lift reverse circulation drilling technology to geothermal well construction in Dalian Jiaoliu Island. Procedia Engineering, 73: 252−257. DOI:10.1016/ j.proeng.2014.06.195.

    CrossRef Google Scholar

    Ma YS. 2023. Deep geothermal resources in China: Potential, distribution, exploitation, and utilization. Energy Geoscience, 4(4): 100209. DOI:10.1016/j.engeos.2023.100209.

    CrossRef Google Scholar

    Ma Z, Pang H, Wang Y, et al. 2008. Geothermal well drilling and completion in Tianjin Area. Drilling Engineering, 35(12): 9−11. (in Chinese)

    Google Scholar

    Rodriguez-Gomez C, Kereszturi G, Jeyakumar P, et al. 2023. Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing. Geothermics, 111: 102716. DOI:10.1016/j.geothermics.2023.102716.

    CrossRef Google Scholar

    Shi HL, Wang GL, Lu C. 2023. Numerical investigation on delaying thermal breakthrough by regulating reinjection fluid path in multi-aquifer geothermal system. Applied Thermal Engineering, 221: 119692. DOI:10.1016/j.applthermaleng.2022.119692.

    CrossRef Google Scholar

    Song W, Liu XX, Zheng TF, et al. 2020. A review of recharge and clogging in sandstone aquifer. Geothermics, 87: 101857. DOI:10.1016/j.geothermics.2020.101857.

    CrossRef Google Scholar

    Song XZ, Li GS, Huang ZW, et al. 2023. Review of high-temperature geothermal drilling and exploitation technologies. Gondwana Research, 122: 315−330. DOI:10.1016/j.gr.2022.10.013.

    CrossRef Google Scholar

    Stefansson VD. 1997. Geothermal reinjection experience. Geothermics, 26(1): 99−139. DOI:10.1016/S0375-6505(96)00035-1.

    CrossRef Google Scholar

    Tang JP, Qiu YM. 2023. Analysis of the influence of the distance between producing Wells on the enhancedgeothermal system. Chinese Journal of Computational Mechanics, 40(01): 126−132. (in Chinese)

    Google Scholar

    Wang GL, Lu C. 2023. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target. Geology and Resources, 32(01): 85−95; 126. DOI:10.13686/j.cnki.dzyzy.2023.01.011.

    CrossRef Google Scholar

    Wang JC, Zhao ZH, Liu GH, et al. 2022. A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm. Energy, 254: 124427. DOI:10.1016/j.energy.2022.124427.

    CrossRef Google Scholar

    Wang Y, Liu YG, Bian K, et al. 2021a. Influence of low temperature tail water reinjection on seepage and heat transfer of carbonate reservoirs. Energy Exploration and Exploitation, 39(6): 2062−2079. DOI:10.1177/01445987211020416.

    CrossRef Google Scholar

    Wang YJ, Ma F, Xie HP, et al. 2021b. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng geothermal field, Xiong'an New Area. Acta Geologica Sinica (English Edition), 95(6): 1902−1914. DOI:10.1111/1755-6724.14878.

    CrossRef Google Scholar

    Xi B, Zhao J, Zhao Y, et al. 2011. Key technologies of hot dry rock drilling during construction. Chinese Journal of Rock Mechanics and Engineering, 30(11): 2234−2243. (in Chinese)

    Google Scholar

    Xia YB, Wang B, Zhang FN, et al. 2023. Optimization and transformation of water treatment technology for surface water reinjection into geothermal reservoir in Dongli Lake area of Tianjin. Energy Reports, 9: 25−29. DOI:10.1016/j.egyr.2022.11.162.

    CrossRef Google Scholar

    Xue Y, Liu S, Chai JR, et al. 2023. Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems. Applied Energy, 337: 120858. DOI:10.1016/j.apenergy.2023.120858.

    CrossRef Google Scholar

    Yu C, Cheng K, Huang ZW, et al. 2024. Experimental study on reinjection enhancement of sandstone with radial wells. Geothermics, 120: 102972. DOI:10.1016/j.geothermics.2024.102972.

    CrossRef Google Scholar

    Yu C, Zhang YQ, Tan YW, et al. 2023. Simulation study of novel methods for water reinjection efficiency improvement of a doublet system in guantao sandstone geothermal reservoir. Geothermics, 111: 102709. DOI:10.1016/j.geothermics.2023.102709.

    CrossRef Google Scholar

    Yue G, Wang G, Ma F, et al. 2021. Evaluation of fault slip probability of geothermal large-scale development: A case study of deep karst geothermal reservoir in Xiong'an New Area. Geology in China, 48(5): 1382−1391. DOI:10.12029/gc20210505.

    CrossRef Google Scholar

    Zhang JC, Chen L, Sun YH, et al. 2024a. Geothermal resource distribution and prospects for development and utilization in China. Natural Gas Industry, 11(1): 6−18. DOI:10.1016/j.ngib.2024.01.001.

    CrossRef Google Scholar

    Zhang L, Geng S, Chao J, et al. 2021a. Corrosion risk assessment of geothermal reinjection wellbore in Xining Basin, China. Geothermics, 90: 101995. DOI:10.1016/j.geothermics.2020.101995.

    CrossRef Google Scholar

    Zhang SY, Jiang ZJ, Zhang SS, et al. 2021b. Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China. Journal of Cleaner Production, 317: 128391. DOI:10.1016/j.jclepro.2021.128391.

    CrossRef Google Scholar

    Zhang YN, Liu YG, Bian K, et al. 2024b. Development status and prospect of underground thermal energy storage technology. Journal of Groundwater Science and Engineering, 12(1): 92−108. DOI:10.26599/jgse.2024.9280008.

    CrossRef Google Scholar

    Zhang Y and Zhang JL. 2014. Technical improvements and application of air-lift reverse circulation drilling technology to ultra-deep geothermal well. Procedia Engineering, 73: 243−251. DOI:10.1016/j.proeng.2014.06.194.

    CrossRef Google Scholar

    Zhao N. 2014. A study of the geological characteristics of the Neogene porous in Tianjin and geothermal reinjection well completion techniques. M. S. thesis. Beijing: China University of Geosciences (Beijing): 30−60. (in Chinese).

    Google Scholar

    Zhao WT, Liu LB, Li J, et al. 2024. Reinjection modeling in sandstone geothermal reservoirs: A case study of Dezhou geothermal heating demonstration project. Natural Gas Industry B, 11(1): 106−120. DOI:10.1016/j.ngib.2024.01.003.

    CrossRef Google Scholar

    Zhao Z, Liu G, Tan X, et al. 2017. Theoretical model of geothermal tail water reinjection based on the equivalent flow channel model. Hydrogeology and Engineering Geology, 44(03): 158−164. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.2017.03.23.

    CrossRef Google Scholar

    Zhou LM, Zhu ZD, Xie XH, et al. 2022. Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance. Renewable Energy, 181: 1440−1458. DOI:10.1016/j.renene.2021.10.014.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(255) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint