Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 2
Article Contents

Mebarki Hanane, Maref Noureddine, Dris Mohammed El-Amine. 2024. Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed. Journal of Groundwater Science and Engineering, 12(2): 161-177. doi: 10.26599/JGSE.2024.9280013
Citation: Mebarki Hanane, Maref Noureddine, Dris Mohammed El-Amine. 2024. Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed. Journal of Groundwater Science and Engineering, 12(2): 161-177. doi: 10.26599/JGSE.2024.9280013

Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed

More Information
  • Modelling the hydrological balance in semi-arid zones is essential for effective water resource management, encompassing both surface water and groundwater. This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed (northwest Algeria) by applying the Soil and Water Assessment Tool (SWAT) hydrological model. SWAT modelling integrates spatial data such as the Digital Elevation Model (DEM), land use, soil types and various meteorological parameters including precipitation, maximum and minimum temperatures, relative humidity, solar radiation and wind speed. The SWAT model was calibrated and validated using data from January 2012 to December 2014, with a calibration period from January 2012 to August 2013 and a validation period from September 2013 to December 2014. Sensitivity and parameter calibration were conducted using the SWAT-SA program, and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge, assessed through statistical coefficients including Nash-Sutcliffe Efficiency (NSE), coefficient of determination (R2) and Percent Bias (PBAIS). Calibration results indicated favourable objective function values (NSE=0.79, R2=0.93, PBAIS= −8.53%), although a slight decrease was observed during validation (NSE=0.69, R2=0.86, and PBAIS= −11.41%). The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin. The SWAT model revealed that approximately 71% of the precipitation in the basin evaporates, while only 29% contributes to surface runoff or infiltration into the soil.

  • 加载中
  • Abbaspour KC, Yang J, Maximov I, et al. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333/ 413–430.

    Google Scholar

    Albergel J, Moussa R, Chahinian N. 2003. Les process us hortoniens et leur importance dans la genèse et le développe-ment des cruesen zone semi-arides: genèse des crues et des inondations: comprehension actuelle des phénomènes phy-siques (1 re partie). La Houille Blanche, 6: 65−73. (in French) DOI:10.1051/lhb/2003114.

    CrossRef Google Scholar

    Ang R, Oeurng C. 2018. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water science, 32(1): 89−101. DOI:10.1016/j.wsj.2017.12.002.

    CrossRef Google Scholar

    Aouissi J, Benabdallah S, Chabaâne ZL, et al. 2016. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management, 174: 39−51. DOI:10.1016/j.agwat.2016.03.004.

    CrossRef Google Scholar

    Arnold JG, Srinivasan R, Muttiah RS, et al. 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1): 73−89. DOI:10.1111/j.1752-1688.1998.tb05961.x.

    CrossRef Google Scholar

    Arnold JG, Moriasi DN, Gassman PW, et al. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4): 1491−1508. DOI:10.13031/2013.42256.

    CrossRef Google Scholar

    Bakreti A, Braud I, Leblois E, et al. 2013. Analyse conjointe des régimes pluviométriques et hydrologiques dans le bassin de la Tafna (Algérie Occidentale). Hydrological Sciences Journal, 58(1): 133−151. (in French) DOI:10.1080/02626667.2012.745080.

    CrossRef Google Scholar

    Benslimane M, Hamimed A, Seddini A, et al. 2014. Utilisation de la teledetection et des SIG pour la modelisation hydrologique du bassin versant de brezina. Journal de l'Eau et de l'Environnement : 18−36. (in French)

    Google Scholar

    Bouaïchi I, Touaïbia B, Dernouni F. 2006. Approche méthodologique de calcul du débit pluvial en cas d'insuffisance de données: Cas de la région de Tipaza, Algérie. Le Journal de l'Eau et de l'Environnement, 5(8): 7–18. (in French)

    Google Scholar

    Bouguerra SA, Bouanani A, Baba-Hamed K. 2016. Transport solide dans un cours d'eau en climat semi-aride: cas du bassin versant de l'Oued Boumessaoud (nord-ouest de l'Algérie). Revue des sciences de l'eau, 29(3): 179−195. (in French) DOI:10.7202/1038923ar.

    CrossRef Google Scholar

    Bucak T, Trolle D, Andersen HE, et al. 2017. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment, 581-582: 413−425. DOI:10.1016/j.scitotenv.2016.12.149.

    CrossRef Google Scholar

    Chen S, Liu F, Zhang Z, et al. 2021. Changes of groundwater flow field of Luangwa River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4(3): 455−462.

    Google Scholar

    Cheng YP, Dong H. 2015. Groundwater system division and compilation of Groundwater Resources Map of Asia. Journal of Groundwater Science and Engineering, 3(2): 127−135.

    Google Scholar

    Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 24(9): 1133–1148.

    Google Scholar

    Cukier R, Fortuin C, Shuler K, et al. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I Theory. The Journal of Chemical Physics, 59(8): 3873–3878.

    Google Scholar

    Duan Q, Sorooshian S, Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall runoff. Water Resources Research, 28(4): 1015−1031. DOI:10.1029/91WR02985.

    CrossRef Google Scholar

    El Kateb H, Zhang H, Zhang P, et al. 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105: 1−10. DOI:10.1016/j.catena.2012.12.012.

    CrossRef Google Scholar

    Ertürk A, Ekdal A, Gürel M, et al. 2014. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499: 437−447. DOI:10.1016/j.scitotenv.2014.07.001.

    CrossRef Google Scholar

    Fatichi S, Vivoni ER, Ogden FL, et al. 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537: 45−60. DOI:10.1016/j.jhydrol.2016.03.026.

    CrossRef Google Scholar

    Ghenim AN, Megnounif A. 2013. Analyse des précipitations dans le Nord-Ouest Algérien. Sécheresse, 24(2): 107−114. (in French) DOI:10.1684/sec.2013.0380.

    CrossRef Google Scholar

    Graf R, Jawgiel K. 2018. The impact of the parameterisation of physiographic features of Urbanised Catchment areas on the spatial distribution of components of the water balance using the WetSpass Model. International Journal of Geo-Information, 7(7): 278. DOI:10.3390/ijgi7070278.

    CrossRef Google Scholar

    Grusson Y, Anctil F, Sauvage S, et al. 2018. Coevolution of hydrological cycle components under climate change: The case of the Garonne River in France. Water, 10(12): 1870. DOI:10.3390/w10121870.

    CrossRef Google Scholar

    Gupta HV, Sorooshian S, Yapo PO. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135−143. DOI:10.1061/(ASCE)1084-0699(1999)4:2(135).

    CrossRef Google Scholar

    Gyamfi C, Ndambuki JM, Anornu GK, et al. 2017. Groundwater recharge modelling in a large scale basin: An example using the SWAT hydrologic model. Modeling Earth Systems and Environment, 3: 1361−1369. DOI:10.1007/s40808-017-0383-z.

    CrossRef Google Scholar

    Habibi B, Meddi M, Boucefiane A. 2013. Analyse fréquentielle des pluies journalières maximales Cas du Bassin Chott-Chergui. Nature & Technology, (8): 41−48. (in French)

    Google Scholar

    Hallouz F, Meddi M, Mahe G. 2013. Modification du régime hydroclimatique dans le bassin de l'Oued Mina (nord-ouest d'Algérie). Revue des Sciences de l'Eau, 26(1): 33−38. (in French) DOI:10.7202/1014917arCopiedAnerrorhas.

    CrossRef Google Scholar

    Hallouz F, Meddi M, Mahé G, et al. 2018. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Science, 32(1): 79−88. DOI:10.1016/j.wsj.2017.12.004.

    CrossRef Google Scholar

    Hao FB, Zhang XS, Yang ZF. 2004. A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin. Journal of Environmental Sciences (China), 16(4): 646−650.

    Google Scholar

    Hassen M, Melesse AM, Zeleke G, et al. 2016. Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environmental Earth Sciences, 75: 806. DOI:10.1007/s12665-016-5636-z.

    CrossRef Google Scholar

    James LD, Burges SJ. 1982. Selection, calibration, and testing of hydrologic models. Michigan: ASAE: 437–472.

    Google Scholar

    Kerdoud S. 2006. Le bassin versant de Beni Haroun eau et pollution. Ph. D. thesis. Constantine: Mentouri university, Algeria: 169. (in French

    Google Scholar

    Khaldi A. 2005. Impacts de la sécheresse sur le régime des écoulements souterrains dans les massifs calcaires de l'Ouest Algérien" Monts de Tlemcen-Saida". Ph. D. thesis. Oran: Oran university, Algeria: 229. (in French

    Google Scholar

    Koo H, Chen M, Jakeman A, et al. 2020. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environmental modelling & software, 127: 104676. DOI:10.1016/j.envsoft.2020.104676.

    CrossRef Google Scholar

    Krause S, Bronstert A. 2007. The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany. Hydrological Processes, 21: 169−184. DOI:10.1002/hyp.6182.

    CrossRef Google Scholar

    Laurent F, Ruelland D, Chapdelaine M. 2007. Simulation de l'effet de changements de pratiques agricoles sur la qualité des eaux avec le modèle SWAT. Journal of Water Science, 20(4): 395−408. (in French) DOI:10.7202/016913ar.

    CrossRef Google Scholar

    Lenhart T, Eckhardt K, Fohrer N, et al. 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10): 645−654.

    Google Scholar

    Liu GD, Wei MH, Yang Z, et al. 2023. Relationship between spatio-temporal evolution of soil pH and geological environment/surface cover in the eastern Nenjiang River Basin of Northeast China during the past 30 years. China Geology, 6(3): 369−382. DOI:10.31035/cg2022062.

    CrossRef Google Scholar

    Liu L, Ao T, Zhou L, et al. 2022. Comprehensive evaluation of parameter importance and optimization based on the integrated sensitivity analysis system: A case study of the BTOP model in the upper Min River Basin, China. Journal of Hydrology, 610: 127819. DOI:10.1016/j.jhydrol.2022.127819.

    CrossRef Google Scholar

    Llasat MC, Llasat-Botija M, Barnolas M, et al. 2009. An analysis of the evolution of hydrometeorological extremes in newspapers: The case of Catalonia, 1982–2006. Natural Hazards and Earth System Sciences, 9: 1201−1212. DOI:10.5194/nhess-9-1201-2009.

    CrossRef Google Scholar

    Mami A. 2020. Impact des changements climatiques sur la disponibilité et la gestion des ressources en eau: cas du bassin versant de la Tafna. Ph. D. thesis. Toulouse: Toulouse university, France: 232. (in French

    Google Scholar

    Mami A, Yebdri D, Sauvage S, et al. 2021. Spatio-temporal trends of hydrological components: The case of the Tafna basin (northwestern Algeria). Journal of Water and Climate Change, 12(7): 2948−2976.

    Google Scholar

    Marcelo RV, Carlos RM, Fausto WA, et al. 2009. Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG. Engenharia Agrícola e Ambiental, 13(5): 581−590. (in French) DOI:10.1590/S1415-43662009000500011.

    CrossRef Google Scholar

    Marhaento H, Booij MJ, Rientjes THM, et al. 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31(11): 2029−2040. DOI:10.1002/hyp.11167.

    CrossRef Google Scholar

    Meddi M, Hubert P. 2003. Impact de la modification du régime pluviométrique sur les ressources en eau du nord-ouest de l'Algérie. In : Hydrology of the Mediterranean and Semiarid Regions. Montpellier/IAHS Publ: 278. (in French)

    Google Scholar

    Mishra AK, Singh VP. 2010. A review of drought concepts. Journal of Hydrology, 391(1-2): 202−216. DOI:10.1016/j.jhydrol.2010.07.012.

    CrossRef Google Scholar