Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 1
Article Contents

Lan Fu-ning, Zhao Yi, Li Jun, Zhu Xiu-qun. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49-61. doi: 10.26599/JGSE.2024.9280005
Citation: Lan Fu-ning, Zhao Yi, Li Jun, Zhu Xiu-qun. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49-61. doi: 10.26599/JGSE.2024.9280005

Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China

More Information
  • To investigate the presence of metal elements and assess their health risk for the populace in the Nandong Underground River Basin (NURB), we conducted an analysis of eleven common heavy metals in the water body. A Health risk assessment (HRA) model was employed to analyze 84 water samples from the NURB. The detection results revealed the following order of heavy metals concentrations: Fe > Al > Mn > Zn > As > Cd > Pb > Cr > Ni > Cu > Hg. Correlation analysis indicated a certain similarity in material source and migration transformation among these eleven metal elements. Our study identified that the health risks for local residents exposed to metal elements in the water of NURB primarily stem from carcinogenic risk (10−6–10−4 a−1) through the drinking water pathway. Moreover, the health risk of heavy metal exposure for children through drinking water was notably higher than for adults. The maximum health risks of Cr in both underground and surface water exceeded the recommendation standard (5.0×10−5 a−1) from ICRP, surpassing the values recommended by the Swedish Environmental Protection Agency, the Dutch Ministry of Construction and Environment and the British Royal Society (5.0×10−6 a−1). The results of the health risk assessment indicate that Cr in the water of NURB is the primary source of carcinogenic risk for local residents, followed by Cd and As. Consequently, it is imperative to control these three carcinogenic metals when the water was used as drinking water resource.

  • 加载中
  • Adewoyin OO, Kayode OT, Omeje O, et al. 2019. Risk assessment of heavy metal and trace elements contamination in groundwater in some parts of Ogun state. Cogent Engineering, 6(1): 1632555. DOI:10.1080/23311916.2019.1632555.

    CrossRef Google Scholar

    Ameh EG. 2019. Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria. International Journal of Coal Science & Technology, 6(2): 260−273. DOI:10.1007/s40789-019-0247-4.

    CrossRef Google Scholar

    Anthony E, Emmanuel DS, Jamel S, et al. 2022. Hydrogeochemical characteristics, sources and human health risk assessment of heavy metal dispersion in the mine pit water–surface water–groundwater system in the largest manganese mine in Ghana. Environmental Technology & Innovation, 102312.

    Google Scholar

    Ba JJ, Gao FF, Peng C, et al. 2022. Characteristics of nitrate and heavy metals pollution in Huixian Wetland and its health risk assessment. Alexandria Engineering Journal, 61(11): 9031−9042. DOI:10.1016/j.aej.2022.02.045.

    CrossRef Google Scholar

    Bakyayita GK, Norrström AC, Kulabako RN. 2019. Assessment of levels, speciation, and toxicity of trace metal contaminants in selected shallow groundwater sources, surface runoff, wastewater, and surface water from designated streams in lake Victoria basin, Uganda. Journal of Environmental and Public Health, 6734017.

    Google Scholar

    Bilal B, Tatiana VC, Kirill AV, et al. 2021. The heavy metal pollution in groundwater, surface and spring water in phosphorite mining area of Tebessa (Aleria). Environmental nanotechnology, Monitoring & Management, 16: 1−10. DOI:10.1016/j.ennm.2021.100591.

    CrossRef Google Scholar

    Duan XL, Zhao XG. 2014. Highlights of the Chinese exposure factors handbook (Adult). China Science Press, Beijing. (in Chinese)

    Google Scholar

    Duan XL, Zhao XG. 2016. Highlights of the Chinese exposure factors handbook (Children). China Environmental Science Press, Beijing. (in Chinese)

    Google Scholar

    EPA. 2006. Risk-based Concentration Table, http://www.epa.gov/reg3hwmd/risk/human/rbc/rbc1006.pdf.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the P. R. China. 2017. Standardization Administration of the P. R. China. GB/T 14848—2017 Standard for Groundwater Quality. (in Chinese)

    Google Scholar

    Jiang Y, Wu Y, Groves C, et al. 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109: 49−61. DOI:10.1016/j.jconhyd.2009.08.001.

    CrossRef Google Scholar

    Lan FN, Zhao Y, Jiang ZC, et al. 2022. Exploring long-term datasets of land use, economy, and demography variations in karst wetland areas to detect possible microclimate changes. Land Degradation & Development, 33: 2743−2756. DOI:10.1002/ldr.4302.

    CrossRef Google Scholar

    Li J, Zhao Y, Zou SZ, et al. 2021. Metal pollutions and human health risks on groundwater from wet, normal, and dry periods in Huixian karst wetland, China. Environmental Science, 42(1). (in Chinese)

    Google Scholar

    Li J, Zou SZ, Liang YP, et al. 2020a. Metal distributions and human health risk assessments on waters in Huixian Karst wetland, China. Environmental Science, 41(11): 4948−4957. (in Chinese) DOI:10.13227/j.hjkx.202003212.

    CrossRef Google Scholar

    Lin JH, Yan Y, Yang GH. 2020. Distribution characteristics of mercury in biofilm and sediment of a typical mercury contaminated river. Earth Environment, 48(3): 341−347. (in Chinese) DOI:10.14050/j.cnki.1672-9250.2020.48.041.

    CrossRef Google Scholar

    Liu P, Jiang ZC, Li YQ, et al. 2023. Quantitative study on improved budyko-based separation of climate and ecological restoration of runoff and sediment yield in Nandong underground river system. Water, 15: 1263. DOI:10.3390/w15071263.

    CrossRef Google Scholar

    Luo X, Ren B, Hursthouse AS, et al. 2019. Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: Potential risk to health in the foodchain. Environ. Geochem Health, 1–12.

    Google Scholar

    Mashaal N, Akagi T, Ishibashi. 2020. Hydrochemical and isotopic study of groundwater in Wadi El-Natrun, Western Desert, Egypt: Implication for salinization processes. Journal of African Earth Sciences, 172: 104011. DOI:10.1016/j.jafrearsci.2020.104011.

    CrossRef Google Scholar

    Ran JK. 2020. A field experimental study on ecological remediation of heavy metal contaminated farmLand soil in Gejiu city, Yunnan Province. M. S. thesis. Kunming, Kunming University of Science and Technology, (in Chinese)

    Google Scholar

    Sadeghi H, Fazlzadeh M, Zarei A, et al. 2020. Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan's tannery site in Ardabil, Iran, Int. International Journal of Environmental Analytical Chemistry, 102(5): 1049−1059.

    Google Scholar

    State Environmental Protection Administration of the P. R. China, GB 3838-2002 Standard for Surface Water Quality. (in Chinese)

    Google Scholar

    Susan, Tumwebaze B, Abrabam, et al. 2017. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere Environmental Toxicology & Risk, 169: 281−287.

    Google Scholar

    USEPA. 2013. Code of federal regulations, protection of environment, risk assessment guidance for superfund, Human Health Evolution Manual (Part A). https://www.govinfo.gov/content/pkg/CFR-2013-title40-vol30/pdf/CFR-2013-title40-vol30,Pdf.USEPA.

    Google Scholar

    USEPA, 1992. Guidelines for exposure assessment. Office of Health and Environmental Assessment US EPA, Washington DC: 186.

    Google Scholar

    Verma P, Singh PK, Sinha RR, et al. 2020. Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: A case study of the Bokaro district, India. Applied Water Science, 10(1): 27.

    Google Scholar

    Yang SR, Huang QH, Huang QR, et al. 2023. Study on human heavy metal exposure in Gejiu tin mining area, Yunan. Yunnan Geology, 42(1): 106−113. (in Chinese)

    Google Scholar

    Yu Y, Zhu RP, Ma DM, et al. 2022. Multiple surface runoff and soil loss responses by sandstone morphologies to land-use and precipitation regimes changes in the Loess Plateau, China. Catena, 217: 106477.

    Google Scholar

    Zeng M, Guo R, Yang SM, et al. 2019. Heavy metal pollution and ecological risk assessment in agricultural production areas: Taking Gejiu City of Yunnan Province as an example. Soils and Crops, 8(1): 85−92. (in Chinese) DOI:10.11689/j.issn.2095-2961.2019.01.010.

    CrossRef Google Scholar

    Zhang Y, Guo CQ, Sun PA. 2019. Groundwater health risk assessment based on spatial analysis in the Qiaomaidi watershed. China Environmental Science, 39(11): 4762−4768. (in Chinese) DOI:10.19674/j.cnki.issn1000-6923.2019.0555.

    CrossRef Google Scholar

    Zhao Y, Li YQ, Qin XM, et al. 2017. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage. Carsologica Sinica, 36(2): 226−233. (in Chinese) DOI:10.11932/karst20170210.

    CrossRef Google Scholar

    Zhou JM, Jiang ZC, Xu GL, et al. 2019. Distribution and health risk assessment of metals in groundwater around iron mine. China Environmental Science, 39(5): 1934−1944. (in Chinese) DOI:10.19674/j.cnki.issn1000-6923.2019.0230.

    CrossRef Google Scholar

    Zhou QM, Jiang ZC, Xu GL, et al. 2019. Water quality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo. Environmental Science, 40(6): 2675−2685. (in Chinese) DOI:10.13227/j.hjkx.201810234.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(775) PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint