Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 1
Article Contents

Hamed Masoud H, Dara Rebwar N, Kirlas Marios C. 2024. Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq. Journal of Groundwater Science and Engineering, 12(1): 16-33. doi: 10.26599/JGSE.2024.9280003
Citation: Hamed Masoud H, Dara Rebwar N, Kirlas Marios C. 2024. Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq. Journal of Groundwater Science and Engineering, 12(1): 16-33. doi: 10.26599/JGSE.2024.9280003

Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq

More Information
  • Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources, especially in areas with intensive anthropogenic activities and groundwater pollution. In the present study, the DRASTIC method was applied using Geographic Information System (GIS) to delineate groundwater vulnerability zones in the Erbil Dumpsite area, Central Erbil Basin, North Iraq. Results showed that the area was classified into four vulnerability classes: Very low (16.97%), low (27.67%), moderate (36.55%) and high (18.81%). The southern, south-eastern and northern parts of the study area exhibited the highest vulnerability potential, while the central-northern, northern and north-western regions displayed the lowest vulnerability potential. Moreover, results of the single-parameter sensitivity analysis indicated that amongst the seven DRASTIC parameters, the unsaturated zone and the aquifer media were the most influencing parameters. In conclustion, the correlation of 25 nitrate concentration values with the final vulnerability map, assessed using the Pearson correlation coefficient, yielded a satisfactory result of R = 0.72.

  • 加载中
  • Abera KA, Gebreyohannes T, Abrha B, et al. 2022. Vulnerability mapping of groundwater resources of mekelle city and surroundings, tigray region, Ethiopia. Water, 14(16): 2577. DOI:10.3390/w14162577.

    CrossRef Google Scholar

    Ahmed I, Nazzal Y, Zaidi FK, et al. 2015. Hydrogeological vulnerability and pollution risk mapping of the Saq and overlying aquifers using the DRASTIC model and GIS techniques, NW Saudi Arabia. Environmental Earth Sciences, 74(2): 1303−1318. DOI:10.1007/s12665-015-4120-5.

    CrossRef Google Scholar

    Alamne SB, Assefa TT, Belay SA, et al. 2022. Mapping groundwater nitrate contaminant risk using the modified DRASTIC model: A case study in Ethiopia. Environmental Systems Research, 11(1): 8. DOI:10.1186/s40068-022-00253-9.

    CrossRef Google Scholar

    Al-Ansari NA. 2013. Management of water resources in Iraq: Perspectives and prognoses. Engineering, 5(8): 667−684. DOI:10.4236/eng.2013.58080.

    CrossRef Google Scholar

    Ali SS, Hamamin D. 2012. Groundwater vulnerability map of basara basin, sulaimani governorate, Iraqi Kurdistan region. Iraqi Journal of Science, 53(3): 579−594.

    Google Scholar

    Aller L, Bennett T, Lehr JH, et al. 1987. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. US Environmental Protection Agency Report (EPA/600/2-87/035), Robert S. Kerr Environmental Research Laboratory: 455.

    Google Scholar

    Allouche N, Maanan M, Gontara M, et al. 2017. A global risk approach to assessing groundwater vulnerability. Environmental Modelling & Software, 88: 168−182. DOI:10.1016/j.envsoft.2016.11.023.

    CrossRef Google Scholar

    Babiker IS, Mohamed MAA, Hiyama T, et al. 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1−3): 127−140.

    Google Scholar

    Bernardo B, Candeias C, Rocha F. 2022. Integration of electrical resistivity and modified DRASTIC model to assess groundwater vulnerability in the surrounding area of hulene-B waste dump, Maputo, Mozambique. Water, 14(11): 1746. DOI:10.3390/w14111746.

    CrossRef Google Scholar

    Boufekane A, Yahiaoui S, Meddi H, et al. 2022. Modified DRASTIC index model for groundwater vulnerability mapping using geostatistic methods and GIS in the Mitidja Plain area (Algeria). Environmental Forensics, 23(5−6): 539−556.

    Google Scholar

    Brindha K, Elango L. 2015. Cross comparison of five popular groundwater pollution vulnerability index approaches. Journal of Hydrology, 524: 597−613. DOI:10.1016/j.jhydrol.2015.03.003.

    CrossRef Google Scholar

    Canora F, Muzzillo R, Sdao F. 2022. Groundwater vulnerability assessment in the metaponto coastal plain (basilicata, Italy). Water, 14(12): 1851. DOI:10.3390/w14121851.

    CrossRef Google Scholar

    Civita M. 1994. Le carte della vulnerabilita degli acquiferi al linquinamiento: Teoria e pratica [Contamination Vulnerability Mapping of the Aquifer: Theory and Practice]. Quaderni di Tecniche di Protezione Ambientale, Pitagora.

    Google Scholar

    Djémin JÉ, Kouamé JK, Deh KS, et al. 2016. Contribution of the sensitivity analysis in groundwater vulnerability assessing using the DRASTIC method: Application to groundwater in dabou region (southern of Côte d'Ivoire). Journal of Environmental Protection, 7(1): 129−143. DOI:10.4236/jep.2016.71012.

    CrossRef Google Scholar

    Ekanem AM, Ikpe EO, George NJ, et al. 2022. Integrating geoelectrical and geological techniques in GIS-based DRASTIC model of groundwater vulnerability potential in the raffia city of Ikot Ekpene and its environs, southern Nigeria. International Journal of Energy and Water Resources.

    Google Scholar

    El Yousfi Y, Himi M, Aqnouy M, et al. 2023. Pollution vulnerability of the ghiss nekkor alluvial aquifer in Al-hoceima (morocco), using GIS-based DRASTIC model. International Journal of Environmental Research and Public Health, 20(6): 4992. DOI:10.3390/ijerph20064992.

    CrossRef Google Scholar

    Ersoy AF, Gültekin F. 2013. DRASTIC-based methodology for assessing groundwater vulnerability in the Gümüshaciköy and Merzifon basin (Amasya, Turkey). Earth Science Resource Journal, 17(1): 33−40.

    Google Scholar

    Etuk M, Viaroli S, Ogbonnaya I, et al. 2022. Vulnerability mapping as a tool to foster groundwater protection in areas subject to rapid population expansion: The case study of Abuja Federal Capital Territory (Nigeria). Journal of Hydrology: Regional Studies, 42: 101158. DOI:10.1016/j.ejrh.2022.101158.

    CrossRef Google Scholar

    Fannakh A, Farsang A. 2022. DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: A review. Environmental Sciences Europe, 34(1): 77. DOI:10.1186/s12302-022-00646-8.

    CrossRef Google Scholar

    Foster SSD. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of Soil and Groundwater to Pollutants. Hydrology Research Hague, Proceding and Information, 38: 69–86.

    Google Scholar

    Gardi SQS. 2017. Environmental impact assessment of Erbil Dumpsite area-west of Erbil City-Iraqi Kurdistan Region. Journal of Tethys, 5(3): 194−217.

    Google Scholar

    Garewal SK, Vasudeo AD, Landge VS, et al. 2017. A GIS-based Modified DRASTIC (ANP) method for assessment of groundwater vulnerability: A case study of Nagpur city, India. Water Quality Research Journal, 52(2): 121−135. DOI:10.2166/wqrj.2017.046.

    CrossRef Google Scholar

    Gogu RC, Dassargues A. 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6): 549−559. DOI:10.1007/s002540050466.

    CrossRef Google Scholar

    Gonçalves V, Albuquerque A, Carvalho P, et al. 2023. Groundwater vulnerability assessment to cemeteries pollution through GIS-based DRASTIC index. Water, 15(4): 812. DOI:10.3390/w15040812.

    CrossRef Google Scholar

    Goyal D, Haritash AK, Singh SK. 2021. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. Journal of Environmental Management, 296: 113161. DOI:10.1016/j.jenvman.2021.113161.

    CrossRef Google Scholar

    Green TR, Taniguchi M, Kooi H, et al. 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3−4): 532−560.

    Google Scholar

    Hamza SM, Ahsan A, Imteaz MA, et al. 2015. Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: A review. Environmental Earth Sciences, 73(7): 3063−3076. DOI:10.1007/s12665-014-3601-2.

    CrossRef Google Scholar

    Hasan M, Islam MA, Aziz Hasan M, et al. 2019. Groundwater vulnerability assessment in Savar upazila of Dhaka district, Bangladesh—a GIS-based DRASTIC modeling. Groundwater for Sustainable Development, 9: 100220. DOI:10.1016/j.gsd.2019.100220.

    CrossRef Google Scholar

    Ifediegwu SI, Chibuike IE. 2021. GIS-based evaluation of shallow aquifer vulnerability to pollution using DRASTIC model: A case study on Abakaliki, southeastern, Nigeria. Arabian Journal of Geosciences, 14(23): 2534. DOI:10.1007/s12517-021-08811-8.

    CrossRef Google Scholar

    Jain H. 2023. Groundwater vulnerability and risk mitigation: A comprehensive review of the techniques and applications. Groundwater for Sustainable Development, 22: 100968. DOI:10.1016/j.gsd.2023.100968.

    CrossRef Google Scholar

    Jawad SB, Hussien KA. 1988. Groundwater monitoring network rationalization using statistical analyses of piezometric fluctuation. Hydrological Sciences Journal, 33(2): 181−191. DOI:10.1080/02626668809491237.

    CrossRef Google Scholar

    Jhariya DC, Kumar T, Pandey HK, et al. 2019. Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environmental Earth Sciences, 78(20): 610. DOI:10.1007/s12665-019-8608-2.

    CrossRef Google Scholar

    Jmal I, Ayed B, Bahloul M, et al. 2022. Contribution of GIS tools and statistical approaches to optimize the DRASTIC model for groundwater vulnerability assessment in arid and semi-arid regions: The case of Sidi Bouzid shallow aquifer. Arabian Journal of Geosciences, 15(10): 974. DOI:10.1007/s12517-022-10149-8.

    CrossRef Google Scholar

    Khosravi K, Sartaj M, Karimi M, et al. 2021. A GIS-based groundwater pollution potential using DRASTIC, modified DRASTIC, and bivariate statistical models. Environmental Science and Pollution Research, 28(36): 50525−50541. DOI:10.1007/s11356-021-13706-y.

    CrossRef Google Scholar

    Kirlas MC, Karpouzos DK, Georgiou PE, et al. 2023. A GIS-based comparative groundwater vulnerability assessment using modified-DRASTIC, modified-SINTACS and NV index in a porous aquifer, Greece. Environments, 10(6): 95. DOI:10.3390/environments10060095.

    CrossRef Google Scholar

    Kirlas MC. 2021. Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece. Journal of Groundwater Science and Engineering, 9(4): 269−278. DOI:10.19637/j.cnki.2305-7068.2021.04.001.

    CrossRef Google Scholar

    Kirlas MC, Karpouzos DÎ, Georgiou PE, et al. 2022a. A comparative study of groundwater vulnerability methods in a porous aquifer in Greece. Applied Water Science, 12(6): 123. DOI:10.1007/s13201-022-01651-1.

    CrossRef Google Scholar

    Kirlas MC, Karpouzos DΚ, Georgiou PE, et al. 2022b. Groundwater vulnerability assessment in Nea Moudania (Chalkidiki) aquifer, using the DRASTIC and AHP-DRASTIC methods. 15th Conference of the Hellenic Hydrotechnical Association (H. H. A.)

    Google Scholar

    Koon AB, Anornu GK, Dekongmen BW, et al. 2023. Evaluation of groundwater vulnerability using GIS-based DRASTIC model in Greater Monrovia, Montserrado County, Liberia. Urban Climate, 48: 101427. DOI:10.1016/j.uclim.2023.101427.

    CrossRef Google Scholar

    Kumar P, Bansod BKS, Debnath SK, et al. 2015. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Environmental Impact Assessment Review, 51: 38−49. DOI:10.1016/j.eiar.2015.02.001.

    CrossRef Google Scholar

    Kumar P, Sharma R, Bhaumik S. 2022. MCDA techniques used in optimization of weights and ratings of DRASTIC model for groundwater vulnerability assessment. Data Science and Management, 5(1): 28−41. DOI:10.1016/j.dsm.2022.03.004.

    CrossRef Google Scholar

    Kumar P, Thakur PK, Bansod BKS, et al. 2018. Groundwater: A regional resource and a regional governance. Environment, Development and Sustainability, 20(3): 1133−1151.

    Google Scholar

    Li X, Ye S, Wang LH, et al. 2017. Tracing groundwater recharge sources beneath a reservoir on a mountain-front plain using hydrochemistry and stable isotopes. Water Supply, 17(5): 1447−1457. DOI:10.2166/WS.2017.036.

    CrossRef Google Scholar

    Machiwal D, Jha MK, Singh VP, et al. 2018. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185: 901−927. DOI:10.1016/j.earscirev.2018.08.009.

    CrossRef Google Scholar

    Mawlood DK. 2019. Sustainability of aquifer and ground water condition in Erbil Basin/Iraq. Zanco Journal of Pure and Applied Sciences, 31(6).

    Google Scholar

    Mensah DO, Appiah-Adjei EK, Asante D. 2023. Groundwater pollution vulnerability assessment in the Assin municipalities of Ghana using GIS-based DRASTIC and SINTACS methods. Modeling Earth Systems and Environment, 9(2): 2955−2967. DOI:10.1007/s40808-022-01680-4.

    CrossRef Google Scholar

    Metwally MI, Armanuos AM, Zeidan BA. 2023. Comparative study for assessment of groundwater vulnerability to pollution using DRASTIC methods applied to central Nile Delta, Egypt. International Journal of Energy and Water Resources, 7(2): 175−190. DOI:10.1007/s42108-022-00198-w.

    CrossRef Google Scholar

    Mkumbo NJ, Mussa KR, Mariki EE, et al. 2022. The use of the DRASTIC-LU/LC model for assessing groundwater vulnerability to nitrate contamination in Morogoro Municipality, Tanzania. Earth, 3(4): 1161−1184. DOI:10.3390/earth3040067.

    CrossRef Google Scholar

    Muhammad AM, Tang ZH, Dawood AS, et al. 2015. Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Internacional, 54(1): 67−81. DOI:10.1016/j.gi.2015.04.003.

    CrossRef Google Scholar

    Napolitano P, Fabbri A. 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference, April 1996). IAHS Publication, 235: 559–566.

    Google Scholar

    Neshat A, Pradhan B. 2017. Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arabian Journal of Geosciences, 10(22): 501. DOI:10.1007/s12517-017-3292-6.

    CrossRef Google Scholar

    Noori R, Ghahremanzadeh H, Kløve B, et al. 2019. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 54(1): 89−100.

    Google Scholar

    Oke SA. 2020. Regional aquifer vulnerability and pollution sensitivity analysis of drastic application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health, 17(7): E2609. DOI:10.3390/ijerph17072609.

    CrossRef Google Scholar

    Omeje ET, Obiora DN, Okeke FN, et al. 2023. Investigation of aquifer vulnerability and sensitivity analysis of modified drastic and sintacs models: A case study of Ovogovo Area, Eastern Nigeria. Acta Geophysica, 71(5): 2439−2464. DOI:10.1007/s11600-022-00992-4.

    CrossRef Google Scholar

    Ouedraogo I, Defourny P, Vanclooster M. 2016. Mapping the groundwater vulnerability for pollution at the pan African scale. Science of the Total Environment, 544: 939−953. DOI:10.1016/j.scitotenv.2015.11.135.

    CrossRef Google Scholar

    Patel P, Mehta D, Sharma N. 2022. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supply, 22(5): 5190−5205. DOI:10.2166/ws.2022.126.

    CrossRef Google Scholar

    Patle D, Nema S, Awasthi MK, et al. 2022. Groundwater vulnerability assessment using DRASTIC model in Niwari District of Bundelkhand Region, Madhya Pradesh, India. Arabian Journal of Geosciences, 15(20): 1590. DOI:10.1007/s12517-022-10870-4.

    CrossRef Google Scholar

    Phok R, Kosgallana DWN, Sumana BW, et al. 2021. Using intrinsic vulnerability and anthropogenic impacts to evaluate and compare groundwater risk potential at northwestern and western coastal aquifers of Sri Lanka through coupling DRASTIC and GIS approach. Applied Water Science, 11(7): 117. DOI:10.1007/s13201-021-01452-y.

    CrossRef Google Scholar

    Pouye A, Faye SC, Di Ãdhiou M, et al. 2022. An evaluation of groundwater vulnerability assessment methods in a rapidly urbanizing city: Evidence from Dakar, Senegal. Environmental Earth Sciences, 81(16): 410. DOI:10.1007/s12665-022-10531-5.

    CrossRef Google Scholar

    Rauf LF, Ali SS, Al-Ansari N. 2022. Groundwater vulnerability of halabja-khurmal sub-basin using modified DRASTIC method. Water, Air & Soil Pollution, 233(11): 440.

    Google Scholar

    Rezig A, Marinangeli L, Saggai S. 2022. Comparative study for assessing vulnerability to pollution in El Asnam plain, North of Algeria. Water Supply, 22(6): 5894−5914. DOI:10.2166/ws.2022.216.

    CrossRef Google Scholar

    Ribeiro L. 2000. SI: A new index of aquifer susceptibility to agricultural pollution. Internal report, ERSHA/CVRM, Instituto Superior Técnico, Lisbon, Portugal: 12.

    Google Scholar

    Saidi S, Bouri S, Ben Dhia H, et al. 2011. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: Application to Souassi aquifer, Tunisian Sahel. Agricultural Water Management, 98(10): 1671−1682. DOI:10.1016/j.agwat.2011.06.005.

    CrossRef Google Scholar

    Salih AO, Ali Al-Manmi D. 2021. DRASTIC model adjusted with lineament density to map groundwater vulnerability: A case study in Rania Basin, Kurdistan, Iraq. Environmental Science and Pollution Research, 28(42): 59731−59744. DOI:10.1007/s11356-021-14912-4.

    CrossRef Google Scholar

    Sarkar M, Pal SC. 2021. Application of DRASTIC and modified DRASTIC models for modeling groundwater vulnerability of malda district in West Bengal. Journal of the Indian Society of Remote Sensing, 49(5): 1201−1219. DOI:10.1007/s12524-020-01176-7.

    CrossRef Google Scholar

    Sener EH, Davraz A. 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake Basin (Isparta, Turkey). Hydrogeology Journal, 21(3): 701−714. DOI:10.1007/s10040-012-0947-y.

    CrossRef Google Scholar

    Sener E, Sener Ş. 2015. Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method. Environmental Earth Sciences, 73(12): 8405−8424. DOI:10.1007/s12665-014-4001-3.

    CrossRef Google Scholar

    Shakeri R, Alijani F, Nassery HR. 2023. Comparison of the DRASTIC Land modified VABHAT models in vulnerability assessment of Karaj aquifer, central Iran, using MCDM, SWARA, and BWM methods. Environmental Earth Sciences, 82(4): 97. DOI:10.1007/s12665-023-10773-x.

    CrossRef Google Scholar

    Singha SS, Pasupuleti S, Singha S, et al. 2019. A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India. Environmental Earth Sciences, 78(21): 628. DOI:10.1007/s12665-019-8640-2.

    CrossRef Google Scholar

    Sissakian VK, Al-Ansari N, Adamo N, et al. 2022. Flood hazards in erbil City Kurdistan region Iraq, 2021: A case study. Engineering, 14(12): 591−601. DOI:10.4236/eng.2022.1412044.

    CrossRef Google Scholar

    Taghavi N, Niven RK, Kramer M, et al. 2023. Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin Basin, Queensland, Australia. Science of the Total Environment, 858: 159945. DOI:10.1016/j.scitotenv.2022.159945.

    CrossRef Google Scholar

    Taghavi N, Niven RK, Paull DJ, et al. 2022. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Science of the Total Environment, 822: 153486. DOI:10.1016/j.scitotenv.2022.153486.

    CrossRef Google Scholar

    Torkashvand M, Neshat A, Javadi S, et al. 2023. Groundwater vulnerability to nitrate contamination from fertilizers using modified DRASTIC frameworks. Water, 15(17): 3134. DOI:10.3390/w15173134.

    CrossRef Google Scholar

    United Nations. 2020. Climate change exacerbates existing conflict risks, likely to create new ones, Assistant Secretary-General Warns Security Council. https://www.un.org/press/en/2020/sc14260.doc.html

    Google Scholar

    Van Stempvoort D, Ewert L, Wassenaar L. 1993. Aquifer vulnerability index: A GIS - compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, 18(1): 25−37. DOI:10.4296/cwrj1801025.

    CrossRef Google Scholar

    Victorine Neh A, Ako Ako A, Richard Ayuk A, et al. 2015. DRASTIC-GIS model for assessing vulnerability to pollution of the phreatic aquiferous formations in Douala-Cameroon. Journal of African Earth Sciences, 102: 180−190. DOI:10.1016/j.jafrearsci.2014.11.001.

    CrossRef Google Scholar

    Wei A, Bi P, Guo J, et al. 2021. Modified DRASTIC model for groundwater vulnerability to nitrate contamination in the Dagujia river basin, China. Water Supply, 21(4): 1793−1805. DOI:10.2166/ws.2021.018.

    CrossRef Google Scholar

    Xiong HX, Wang YZ, Guo X, et al. 2022. Current status and future challenges of groundwater vulnerability assessment: A bibliometric analysis. Journal of Hydrology, 615: 128694. DOI:10.1016/j.jhydrol.2022.128694.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1175) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint