2024 Vol. 47, No. 4
Article Contents

LI Xiaoli, WANG Yudong, TIAN Haofei, LIU Henglin, LIANG Xingxing. 2024. Study on the risk of debris flow in Maoshangou, Yanqing District, Beijing. North China Geology, 47(4): 57-63,90. doi: 10.19948/j.12-1471/P.2024.04.06
Citation: LI Xiaoli, WANG Yudong, TIAN Haofei, LIU Henglin, LIANG Xingxing. 2024. Study on the risk of debris flow in Maoshangou, Yanqing District, Beijing. North China Geology, 47(4): 57-63,90. doi: 10.19948/j.12-1471/P.2024.04.06

Study on the risk of debris flow in Maoshangou, Yanqing District, Beijing

More Information
  • Corresponding author: TIAN Haofei  
  • This paper is the result of debris flow hazard study.[Objective]The debris flow, because of its wide range, rapid disaster and great harm, has caused damage to the basic engineering facilities in the mountain area, and seriously hindered the regional economic development. In recent years, geological disasters have occurred frequently in the mountainous areas of Beijing.Yanqing District, as the ecological conservation area of Beijing, has many tourist attractions, but there are also many hidden dangers of debris flow. [Methods]In order to reduce the potential threat of debris flow, it is very important to study related debris flow in Yanqing District.In this paper, the debris flow ditch in Chashikou village of Yanqing District is taken as the research object to analyze and forecast the risk. [Results]The results show that loose deposits of Maoshangou can be categorized into three types:alluvial and diluvial deposits, residual-slope deposits, and artificial deposits, with a dynamic reserve of 9.9×104 m3.From the peak flow value and the total amounts of solids washed out by the primary debris flow, it can be determined that the size of this debris flow is medium. By varying rainstorm frequencies (10-, 20-, 50-, 100-year rainfall events), the respective hazardous areas are measured to be 0.004 4, 0.005 1, 0.005 9, and 0.006 8 km2.The stage of debris flow development is considered to be a recession period. [Conclusions]After thorough discussions, it was found that the chances of the debris flow gully erupting into a medium-sized debris flow are high, which will pose a hazard to the residents of the downstream roads and villages. The detailed study of this ditch not only helps to deeply understand the mechanism, dynamic characteristics and development trend of the debris flow in this region, but also provides a reference for the study of debris flow and disaster prevention and control of the single ditch under similar geological conditions.
  • 加载中
  • [1] 陈林,杨帆.2013.多因子泥石流危险范围预测模型的运用-以均良村泥石流为例[J].中国水运月刊,(1Z):61-62,65.

    Google Scholar

    [2] 陈文鸿,余斌,柳清文,等.2023.北京山区泥石流的单沟预报[J].长江科学院院报,40(1):94-100+115.

    Google Scholar

    [3] 陈文鸿,余斌,柳清文,等.2021.北京山区泥石流激发降雨特征及其临界值[J].人民长江,52(4):27-33.

    Google Scholar

    [4] 陈东杰.2013.京西门头沟区平原村泥石流风险评价[D].中国地质大学(北京).

    Google Scholar

    [5] 黄泽森,刘力勋,黄文,等.2024.峨边彝族自治县哈曲乡瓦噶村哈曲来挖沟泥石流发育特征及防治建议[J].四川地质学报,44(03):489-493.

    Google Scholar

    [6] 景书渊.2024.松桃县永安乡沙堡村半沟泥石流发育特征及工程治理措施[J].科技资讯,22(16):229-231.

    Google Scholar

    [7] 梁永顺,孙永彬,王瑞军.2021.北京市延庆区秤勾湾沟泥石流特征及预警雨量研究[J].矿产勘查,12(8):1835-1843.

    Google Scholar

    [8] 刘云鹏,钟果,肖华波,等.2024.曾家沟泥石流特征分析及危害程度评价[J].水电站设计,40(02):1-9+20.

    Google Scholar

    [9] 申健,李瑜瑶,李巧刚.2018.北京房山地区泥石流特征分析[J].城市地质,13(01):59-63.

    Google Scholar

    [10] 史继帅,姜亮,翟胜强.2024.四川甘洛县黑西洛沟“8·31”泥石流动力过程[J].中国地质灾害与防治学报,35(03):52-60.

    Google Scholar

    [11] 孙佳丽.2018.北京市门头沟区泥石流灾害分布及临界雨量研究[J].地下水,40(04):146-148.

    Google Scholar

    [12] 涂剑,马超,杨海龙.2017.北京山区暴雨泥石流激发雨量条件[J].中国水土保持科学,15(5):103-110.

    Google Scholar

    [13] 王海芝.2020.北京地区暴雨泥石流预警阈值研究[J].第四纪研究,40(5):1371-1380.

    Google Scholar

    [14] 王瑞军,张春雷,孙永彬,等.2022.北京石窑村泥石流沟发育形成特征与动力学研究[J].矿产勘查,13(Z1):344-352.

    Google Scholar

    [15] 王瑞军,王帅东,孙永彬,等.2024.北京延庆泥石流隐患分布规律及演化趋势研究[J].世界核地质科学,41(03):623-632.

    Google Scholar

    [16] 王颖,李新森,付钰涵,等.2021.北京山区泥石流灾害预警模型及应用效果[J].国土资源信息化,(05):58-62+42.

    Google Scholar

    [17] 魏星宇,沈军辉,吴俊杰,等.2022.泸-石高速甘草沟泥石流发育特征及危险性分析[J].自然灾害学报,31(06):229-238.

    Google Scholar

    [18] 袁菲菲.2014.北京房山区秋林铺村泥石流风险评价[D].中国地质大学(北京).

    Google Scholar

    [19] 张伟. 2023. 某电站白石头沟泥石流特性及运动过程数值模拟研究[D].西安理工大学.

    Google Scholar

    [20] 章新益,孙永彬,王诜,等.2021.北京市延庆地区水泉沟村车道沟泥石流发育特征及动力学研究[J].矿产勘查,12(2):461-469.

    Google Scholar

    [21] 赵蔓,孙俊,朱恺悦.2024.云南兰坪县啦井村泥石流模拟预测及风险评价[J].中国地质灾害与防治学报,35(05):110-119.

    Google Scholar

    [22] Cao C, Wang Y H, Chen J P, et al. 2015. Debris flow risk assessment based on cloud in Miyun Beijing[J]. Journal of Engineering Geology, 23(s1):624-630.

    Google Scholar

    [23] Chen M, Luo Y, Tang C, et al.2024.Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China[J].Natural Hazards, (3):120.

    Google Scholar

    [24] Cordoba F E, Groch D, Cogliati M G, Jaboyedoff M Gil V. 2023. A semi-quantitative risk assessment of debris flow in northernmost Patagonia, Argentina[J].Revista de la Asociación Geológica Argentina, 80(1):1-20.

    Google Scholar

    [25] Hirschberg J, Badoux A, McArdell B W, et al.2021.Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment[J].NaturalHazardsandEarthSystemSciences, 21(9):2773-2789.

    Google Scholar

    [26] Liu B, Hu X W, Ma G T, et al. 2021. Back calculation and hazard prediction of a debris flow in Wenchuan meizoseismal area, China[J].Bulletin of Engineering Geology and the Environment, 80:3457-3474.

    Google Scholar

    [27] Wang N, Cheng W M, Zhao M, et al.2019.Identification of the debris flow process types within catchments of Beijing mountainous area[J].Water, 11(4):638.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(139) PDF downloads(144) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint