2024 Vol. 47, No. 4
Article Contents

CHEN Kang, JING Yongkang, WANG Yuanwei, ZHANG Long, DENG Nan, WU Junwei, ZHANG Yi, LI Fawang, LIU Peiwen. 2024. High temperature and high pressure experimental study on the reaction of silicon-rich melt with mantle olivine and its implications for the property transformation of the subcontinental lithosphere mantle in the North China Craton. North China Geology, 47(4): 25-36. doi: 10.19948/j.12-1471/P.2024.04.03
Citation: CHEN Kang, JING Yongkang, WANG Yuanwei, ZHANG Long, DENG Nan, WU Junwei, ZHANG Yi, LI Fawang, LIU Peiwen. 2024. High temperature and high pressure experimental study on the reaction of silicon-rich melt with mantle olivine and its implications for the property transformation of the subcontinental lithosphere mantle in the North China Craton. North China Geology, 47(4): 25-36. doi: 10.19948/j.12-1471/P.2024.04.03

High temperature and high pressure experimental study on the reaction of silicon-rich melt with mantle olivine and its implications for the property transformation of the subcontinental lithosphere mantle in the North China Craton

  • This paper is the result of research on the lithospheric mantle.[Objective]In terms of petrological and geochemical studies on a large number of mantle xenoliths, melt-peridotite reactions always occur in subcontinental lithospheric mantles, especially in the North China Craton (NCC). Based on the mineral metasomatic characteristics of mantle xenoliths and the related element geochemical signatures, the reaction between silicate melt and peridotite is the main type of melt-rock reaction within the NCC lithosphere mantle.However, the direct evidence of experimental petrography about the mechanism is insufficient. [Methods] In this contribution, natural olivine of harzburgite from Hebi, Henan province, and tonalite from Sandouping, Huangling, Hubei province were collected as starting material. The Si-rich melt-olivine reaction experiments were performed at conditions of 1 200~1 400°C, 1.0~1.5 GPa, on LC25-0300/50 piston-cylinder apparatus equipped at Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, which explored the reaction mechanism and kinetics of the melt-peridotite reaction. [Results] The main crystallized phase under experimental conditions is orthopyroxene, its En content ranges from 73 to 100 discriminated into enstatite.After reactions, the MgO content of reacted melts increased and linearly correlated with the temperature, while the contents of SiO2, Al2O3 and K2O decreased linearly with the increase in temperature.As the temperature increased, more forsterite was dissolved in the melts, and with more orthopyroxene generated, the SiO2, Al2O3 and K2O of melts decreased which changed the composition of the melts. Under the pressure of 1.0GPa, the temperature rises from 1 250°C to 1 350°C, the SiO2, Al2O3, and K2O in the residual melt decrease from 66.20%, 17.24% and 1.40% to 61.91%, 16.02%, and 1.28% respectively, however MgO in the residual melt increases from 3.93%to 8.26%.Under the pressure of 1.5 GPa, the temperature rises from 1 250°C to 1 400°C, the SiO2, Al2O3 and K2O in the residual melt decrease from 65.79%, 17.64% and 1.36% to 61.74%, 15.78%, and 1.23% respectively, however MgO in the residual melt increases from 3.11% to 7.07%. [Conclusions]The pressure has a much less influence on the chemical composition change or residual melts than the temperature. In all reactions between Si-rich melt and olivine, orthopyroxene was newly formed the experimental results also explain the composition of the peridotite in NCC and the phenomenon of the orthopyroxene veins in the peridotite, which can transform the lithosphere mantle from refractory into fertile.
  • 加载中
  • [1] 常青松,施建荣,张家辉,等.2022.集宁地区古元古代基性麻粒岩两期变质事件的地质意义[J].华北地质,45(02):68-75.

    Google Scholar

    [2] 高山,章军锋,许文良,等.2009.拆沉作用与华北克拉通破坏[J].科学通报,54:1962-1973.

    Google Scholar

    [3] 郭硕,刘洋,滕学建,等.2023.华北克拉通西北缘(狼山段)边界特征及其构造意义[J].华北地质,46(03):28-34.

    Google Scholar

    [4] 王超,金振民,高山,等. 2010.华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制:实验约束[J].中国科学:地球科学,40(5):541-555.

    Google Scholar

    [5] 王春光.2015.不同性质熔体与橄榄岩反应的动力学研究[D].博士学位论文.长春:吉林大学.

    Google Scholar

    [6] 王惠初,张家辉,任云伟,等.2022.华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论[J].华北地质,45(01):18-41.

    Google Scholar

    [7] 王明梁,唐红峰.2014.英云闪长质熔体与地幔橄榄石反应的实验研究--对克拉通内部高镁安山岩成因的约束[J].中国科学:地球科学,44(3):405-413.

    Google Scholar

    [8] 王勤.2016.橄榄石的同系温度T/Tm:对上地幔蠕变与橄榄石组构转变的启示[J].中国科学:地球科学,46(5):618-638.

    Google Scholar

    [9] 吴福元,徐义刚,高山,等.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,24(6):1145-1174.

    Google Scholar

    [10] 徐义刚.2006.用玄武岩组成反演中-新生代华北岩石圈的演化[J].地学前缘,13(2):93-104.

    Google Scholar

    [11] 许文良,周群君,杨德彬,等.2013.大陆深俯冲作用对邻区岩石圈地幔改造的时间、方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据[J].科学通报,58(23):2300-2305.

    Google Scholar

    [12] 张宏福.2009.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报,54(14):2008-2026.

    Google Scholar

    [13] 郑建平,余淳梅,路凤香,等.2007.华北东部大陆地幔橄榄岩组成、年龄与岩石圈减薄[J].地学前缘,14(2):87-97.

    Google Scholar

    [14] 郑永飞,徐峥,赵子福,等.2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J].中国科学:地球科学,48(4):379-414.

    Google Scholar

    [15] 周君群.2014.鲁西早白垩世火成岩中异剥橄榄岩和辉石捕虏体的成因[D].博士学位论文.长春:吉林大学.

    Google Scholar

    [16] Bodinier J L, Vasseur G, Vernieres J, et al. 1990.Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite[J].Journal of Petrology, 31(3):597-628.

    Google Scholar

    [17] Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere[J].Earth and Planetary Science Letters, 1989, 96(1-2):15-26.

    Google Scholar

    [18] Carlson R W, Pearson D G, James D E, et al. 2005.Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1).

    Google Scholar

    [19] Dai H K, Zheng J P, O’Reilly S Y, et al.2019.Langshan basalts record recycled Paleo-Asian oceanic materials beneath the Northwest North China Craton[J].Chemical Geology, 524:88-103.

    Google Scholar

    [20] Fan W M, Zhang H F, Baker J, et al.2000.On and Off the North China Craton:Where is the Archaean Keel?[J]. Journal of Petrology, 41:933-950.

    Google Scholar

    [21] Gao S, Rudnick R L, Xu W L, et al.2008.Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J].Earth and Planetary Science Letters, 270:41-53.

    Google Scholar

    [22] Griffin W L, Zhang A D, O’Reilly S Y, et al.1998.Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton.In:Flower M, Chung S L, Lo C-H, et al(eds).Mantle dynamics and plate interaction in east Asia[J]. American Geophysical Union, Geodynamics Series 27, 27:107-126.

    Google Scholar

    [23] Griffin W, O’Reilly S Y, Afonso J C, et al. 2009.The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications[J].Journal of Petrology, 50:1185-1204.

    Google Scholar

    [24] Hu J, Jiang N, Carlson R W, et al. 2019. Metasomatism of the crustmantle boundary by melts derived from subducted sedimentary carbonates and silicates[J]. Geochimica et Cosmochimica Acta, 260:311-328.

    Google Scholar

    [25] Kelemen P B, Dick H J B, Quick J E. 1992. Rormation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 358:635-641.

    Google Scholar

    [26] Kelemen P B, Hart S R, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction[J].Earth and Planetary Science Letters, 164:387-406.

    Google Scholar

    [27] Lin A B, Zheng J P, Xiong Q, et al. 2019. A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton[J]. Contributions to Mineralogy and Petrology, 174(2):15.

    Google Scholar

    [28] Liu Y S, Gao S, Lee C T, et al.2005.Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust[J].Earth and Planetary Science Letters, 234(1-2):39-57.

    Google Scholar

    [29] Morgan Z, Liang Y. 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation[J]. Contributions to Mineralogy and Petrology, 150:369-385.

    Google Scholar

    [30] Sun J, Liu C Z, Wu F Y, et al.2012.Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton:Trace-element and Sr-isotope constraints[J]. Chemical Geology, 328:123-136.

    Google Scholar

    [31] Wang M, Tang H. 2013.Reaction experiments between tonalitic melt and mantle olivine and their implications for genesis of high-Mg andesites within cratons[J]. Science China: Earth Sciences, 56(11):1918-1925.

    Google Scholar

    [32] Xu W L, Hergt J M, Gao S, et al.2008.Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 265:123-137.

    Google Scholar

    [33] Xu W L, Yang D B, Gao S, et al. 2010.Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning[J].Chemical Geology, 270:257-273.

    Google Scholar

    [34] Yaxley G M, Green D H.1998.Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust[J]. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78:243-255.

    Google Scholar

    [35] Zhang H T, Zhang H F, Zou D Y. 2021.Comprehensive refertilization of the Archean-Paleoproterozoic lithospheric mantle beneath the northwestern North China Craton: Evidence from in situ Sr isotopes of the Siziwangqi peridotites[J].Lithos, 380-381:105822.

    Google Scholar

    [36] Zhao X M, Wang H, Li Z H, et al. 2020.Multi-stage metasomatism of lithospheric mantle by asthenosphere derived melts: Evidence from mantle xenoliths in Daxizhuang at the eastern North China Craton[J].Mineralogy and Petrology, 114(2):141-159.

    Google Scholar

    [37] Zhao X M, Wang H, Li Z H, et al.2021.Nature and evolution of lithospheric mantle beneath the western North China Craton: Constraints from peridotite and pyroxenite xenoliths in the Sanyitang basalts[J].Lithos, 384-385:105987.

    Google Scholar

    [38] Zheng J P, O’Reilly S Y, Griffin W L, et al. 2001.Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J].Lithos, 57:43-66.

    Google Scholar

    [39] Zheng J P, Griffin W L, O’Reilly S Y, et al.2007.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmoschimica Acta, 71:5203-5225.

    Google Scholar

    [40] Zou D Y, Zhang H F, Zhang X Q, et al. 2020.Refertilization of lithospheric mantle beneath the North China Craton in Mesozoic: Evidence from in situ Sr isotopes of Fuxin peridotite[J]. Lithos, 364-365:105478.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(198) PDF downloads(143) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint