| [1] |
常青松,施建荣,张家辉,等.2022.集宁地区古元古代基性麻粒岩两期变质事件的地质意义[J].华北地质,45(02):68-75.
Google Scholar
|
| [2] |
高山,章军锋,许文良,等.2009.拆沉作用与华北克拉通破坏[J].科学通报,54:1962-1973.
Google Scholar
|
| [3] |
郭硕,刘洋,滕学建,等.2023.华北克拉通西北缘(狼山段)边界特征及其构造意义[J].华北地质,46(03):28-34.
Google Scholar
|
| [4] |
王超,金振民,高山,等. 2010.华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制:实验约束[J].中国科学:地球科学,40(5):541-555.
Google Scholar
|
| [5] |
王春光.2015.不同性质熔体与橄榄岩反应的动力学研究[D].博士学位论文.长春:吉林大学.
Google Scholar
|
| [6] |
王惠初,张家辉,任云伟,等.2022.华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论[J].华北地质,45(01):18-41.
Google Scholar
|
| [7] |
王明梁,唐红峰.2014.英云闪长质熔体与地幔橄榄石反应的实验研究--对克拉通内部高镁安山岩成因的约束[J].中国科学:地球科学,44(3):405-413.
Google Scholar
|
| [8] |
王勤.2016.橄榄石的同系温度T/Tm:对上地幔蠕变与橄榄石组构转变的启示[J].中国科学:地球科学,46(5):618-638.
Google Scholar
|
| [9] |
吴福元,徐义刚,高山,等.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,24(6):1145-1174.
Google Scholar
|
| [10] |
徐义刚.2006.用玄武岩组成反演中-新生代华北岩石圈的演化[J].地学前缘,13(2):93-104.
Google Scholar
|
| [11] |
许文良,周群君,杨德彬,等.2013.大陆深俯冲作用对邻区岩石圈地幔改造的时间、方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据[J].科学通报,58(23):2300-2305.
Google Scholar
|
| [12] |
张宏福.2009.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报,54(14):2008-2026.
Google Scholar
|
| [13] |
郑建平,余淳梅,路凤香,等.2007.华北东部大陆地幔橄榄岩组成、年龄与岩石圈减薄[J].地学前缘,14(2):87-97.
Google Scholar
|
| [14] |
郑永飞,徐峥,赵子福,等.2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J].中国科学:地球科学,48(4):379-414.
Google Scholar
|
| [15] |
周君群.2014.鲁西早白垩世火成岩中异剥橄榄岩和辉石捕虏体的成因[D].博士学位论文.长春:吉林大学.
Google Scholar
|
| [16] |
Bodinier J L, Vasseur G, Vernieres J, et al. 1990.Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite[J].Journal of Petrology, 31(3):597-628.
Google Scholar
|
| [17] |
Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere[J].Earth and Planetary Science Letters, 1989, 96(1-2):15-26.
Google Scholar
|
| [18] |
Carlson R W, Pearson D G, James D E, et al. 2005.Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1).
Google Scholar
|
| [19] |
Dai H K, Zheng J P, O’Reilly S Y, et al.2019.Langshan basalts record recycled Paleo-Asian oceanic materials beneath the Northwest North China Craton[J].Chemical Geology, 524:88-103.
Google Scholar
|
| [20] |
Fan W M, Zhang H F, Baker J, et al.2000.On and Off the North China Craton:Where is the Archaean Keel?[J]. Journal of Petrology, 41:933-950.
Google Scholar
|
| [21] |
Gao S, Rudnick R L, Xu W L, et al.2008.Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J].Earth and Planetary Science Letters, 270:41-53.
Google Scholar
|
| [22] |
Griffin W L, Zhang A D, O’Reilly S Y, et al.1998.Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton.In:Flower M, Chung S L, Lo C-H, et al(eds).Mantle dynamics and plate interaction in east Asia[J]. American Geophysical Union, Geodynamics Series 27, 27:107-126.
Google Scholar
|
| [23] |
Griffin W, O’Reilly S Y, Afonso J C, et al. 2009.The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications[J].Journal of Petrology, 50:1185-1204.
Google Scholar
|
| [24] |
Hu J, Jiang N, Carlson R W, et al. 2019. Metasomatism of the crustmantle boundary by melts derived from subducted sedimentary carbonates and silicates[J]. Geochimica et Cosmochimica Acta, 260:311-328.
Google Scholar
|
| [25] |
Kelemen P B, Dick H J B, Quick J E. 1992. Rormation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 358:635-641.
Google Scholar
|
| [26] |
Kelemen P B, Hart S R, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction[J].Earth and Planetary Science Letters, 164:387-406.
Google Scholar
|
| [27] |
Lin A B, Zheng J P, Xiong Q, et al. 2019. A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton[J]. Contributions to Mineralogy and Petrology, 174(2):15.
Google Scholar
|
| [28] |
Liu Y S, Gao S, Lee C T, et al.2005.Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust[J].Earth and Planetary Science Letters, 234(1-2):39-57.
Google Scholar
|
| [29] |
Morgan Z, Liang Y. 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation[J]. Contributions to Mineralogy and Petrology, 150:369-385.
Google Scholar
|
| [30] |
Sun J, Liu C Z, Wu F Y, et al.2012.Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton:Trace-element and Sr-isotope constraints[J]. Chemical Geology, 328:123-136.
Google Scholar
|
| [31] |
Wang M, Tang H. 2013.Reaction experiments between tonalitic melt and mantle olivine and their implications for genesis of high-Mg andesites within cratons[J]. Science China: Earth Sciences, 56(11):1918-1925.
Google Scholar
|
| [32] |
Xu W L, Hergt J M, Gao S, et al.2008.Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 265:123-137.
Google Scholar
|
| [33] |
Xu W L, Yang D B, Gao S, et al. 2010.Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning[J].Chemical Geology, 270:257-273.
Google Scholar
|
| [34] |
Yaxley G M, Green D H.1998.Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust[J]. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78:243-255.
Google Scholar
|
| [35] |
Zhang H T, Zhang H F, Zou D Y. 2021.Comprehensive refertilization of the Archean-Paleoproterozoic lithospheric mantle beneath the northwestern North China Craton: Evidence from in situ Sr isotopes of the Siziwangqi peridotites[J].Lithos, 380-381:105822.
Google Scholar
|
| [36] |
Zhao X M, Wang H, Li Z H, et al. 2020.Multi-stage metasomatism of lithospheric mantle by asthenosphere derived melts: Evidence from mantle xenoliths in Daxizhuang at the eastern North China Craton[J].Mineralogy and Petrology, 114(2):141-159.
Google Scholar
|
| [37] |
Zhao X M, Wang H, Li Z H, et al.2021.Nature and evolution of lithospheric mantle beneath the western North China Craton: Constraints from peridotite and pyroxenite xenoliths in the Sanyitang basalts[J].Lithos, 384-385:105987.
Google Scholar
|
| [38] |
Zheng J P, O’Reilly S Y, Griffin W L, et al. 2001.Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J].Lithos, 57:43-66.
Google Scholar
|
| [39] |
Zheng J P, Griffin W L, O’Reilly S Y, et al.2007.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmoschimica Acta, 71:5203-5225.
Google Scholar
|
| [40] |
Zou D Y, Zhang H F, Zhang X Q, et al. 2020.Refertilization of lithospheric mantle beneath the North China Craton in Mesozoic: Evidence from in situ Sr isotopes of Fuxin peridotite[J]. Lithos, 364-365:105478.
Google Scholar
|