| [1] | W H O.Guidelines for drinking-water quality. Fourth edition incorporating the first addendum[S].Geneva, 2017. 						Google Scholar
						 | 
					
								| [2] | BATABYAL A K, GUPTA S. Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis[J].Environmental Monitoring and Assessment, 2017, 189(8):369. 						Google Scholar
						 | 
					
								| [3] | ALVAREZ M, CAROL E. Geochemical occurrence of arsenic, vanadium and fluoride in groundwater of Patagonia, Argentina: Sources and mobilization processes[J].Journal of South American Earth Sciences, 2019, 89:1-9. 						Google Scholar
						 | 
					
								| [4] | JIA Y, XI B, JIANG Y, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of The Total Environment, 2018, 643, 967-993. 						Google Scholar
						 | 
					
								| [5] | PETER B M, CRAIG J B, TYLER D J, et al.Fluoride occurrence in United States groundwater[J]. Science of The Total Environment, 2020, 732:139217. 						Google Scholar
						 | 
					
								| [6] | 何锦,张福存,韩双宝,等.中国北方高氟地下水分布特征和成因分析[J].中国地质,2010(3):621-626. 						Google Scholar
						 | 
					
								| [7] | 苗晋杰,刘宏伟,郭旭等.平原区承压水上部弱透水层对NH4+、NO3-的阻滞能力分析研究-以北京市通州区为例[J].华北地质,2022,45(3):62-68. 						Google Scholar
						 | 
					
								| [8] | 张卓,陈社明,柳富田,等.滨海平原区深层高氟地下水富集机理:以滦河三角洲为例[J].现代地质,2023,37(4):1-10. 						Google Scholar
						 | 
					
								| [9] | 张卓,柳富田,陈社明,等.滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J].中国地质,2023,50(3):1-10. 						Google Scholar
						 | 
					
								| [10] | 蒋万军, 孟利山, 柳富田, 等.张家口地区地下水资源与环境质量现状及开发利用保护建议[J].华北地质,2022,45(3):44-54. 						Google Scholar
						 | 
					
								| [11] | FUGE R.Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100:393-406. 						Google Scholar
						 | 
					
								| [12] | WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2020, 2:1-39. 						Google Scholar
						 | 
					
								| [13] | FANTONG W Y, SATAKE H, AYONGHE S N, et al. Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: Implications for incidence of fluorosis and optimal consumption dose[J]. Environmental Geochemistry and Health, 2010, 32(2):147-163. 						Google Scholar
						 | 
					
								| [14] | YIDANA S M, BANOENG YAKUBO B, AKABZAA T M.Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin[J]. Journal of African Earth Sciences, 2010, 58(2):220-234. 						Google Scholar
						 | 
					
								| [15] | DONG S, LIU B, SHI X, et al. The spatial distribution and hydrogeological controls of fluoride in the confined and unconfined groundwater of Tuoketuo County, Hohhot, Inner Mongolia, China[J].Environmental Earth Sciences, 2015, 74(1):325-335. 						Google Scholar
						 | 
					
								| [16] | CHOWDHURY A, ADAK M, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J].Journal of Hydrology, 2019, 574:333-359. 						Google Scholar
						 | 
					
								| [17] | 成世才,荣晓伟,于明光.济南市先行区浅层地下水中氟地球化学特征及成因分析[J].中国煤炭地质,2022,34(05):43-49. 						Google Scholar
						 | 
					
								| [18] | EDMUNDS W M, SMEDLEY P L.Fluoride in natural waters. In O. Selinus (ed.) Essentials of medical geology:Revised edition[M]. Dordrecht: Springer Netherlands. 2013, pp:311-336. 						Google Scholar
						 | 
					
								| [19] | RANGO T, BIANCHINI G, BECCALUVA L, et al. Hydrogeochemical study in the Main Ethiopian Rift: New insights to the source and enrichment mechanism of fluoride[J]. Environmental Geology, 2009, 58(1):109-118. 						Google Scholar
						 | 
					
								| [20] | GUO H, ZHANG Y, XING L, et al.Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia[J].Applied Geochemistry, 2012, 27:2187-2196. 						Google Scholar
						 | 
					
								| [21] | 孟春霞,郑西来,王成见.平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报(自然科学版),2019,49(11):111-119. 						Google Scholar
						 | 
					
								| [22] | MUKHERJEE I, SINGH U K. Groundwater fluoride contamination, probable release, and containment mechanisms:A review on Indian context[J]. Environmental Geochemistry and Health, 2018, 40(6), 2259-2301. 						Google Scholar
						 | 
					
								| [23] | 孔晓乐,王仕琴,赵焕,等.华北低平原区地下水中氟分布特征及形成原因:以南皮县为例[J].环境科学,2015,36(11):4051-4059. 						Google Scholar
						 | 
					
								| [24] | 毛若愚,郭华明,贾永锋,等.内蒙古河套盆地含氟地下水分布特点及成因[J].地学前缘,2015,22(2):260-268. 						Google Scholar
						 | 
					
								| [25] | VITHANAGE M, BHATTACHARYA P.Fluoride in the environment:Sources, distribution and defluoridation[J].Environmental Chemistry Letters, 2015, 13(2):131-147. 						Google Scholar
						 | 
					
								| [26] | CLARK I, FRITZ P.Environmental Isotopes in Hydrogeology[M].Lewis Publishers, New York, 1997. 						Google Scholar
						 | 
					
								| [27] | 方成,柳富田,孟利山,等.氢氧同位素在曹妃甸地区水循环研究中的应用[J].地质调查与研究,2014,37(2):102-107. 						Google Scholar
						 | 
					
								| [28] | CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1703. 						Google Scholar
						 | 
					
								| [29] | PANG Z, KONG Y, LI J, et al. An Isotopic Geoindicator in the Hydrological Cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537. 						Google Scholar
						 | 
					
								| [30] | ZHANG Z, GUO H, ZHAO W, et al. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China[J].Hydrogeology Journal, 2018, 26:1499-1512. 						Google Scholar
						 | 
					
								| [31] | MARTINS V, PINO D, BERTOLO R, et al. Who to blame for groundwater fluoride anomaly in São Paulo, Brazil? Hydro-geochemistry and isotopic evidence[J]. Applied Geochemistry, 2018, 90:25-28. 						Google Scholar
						 | 
					
								| [32] | LI P, HE X, LI Y, et al. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau:A Case Study of Tongchuan, Northwest China[J].Exposure and Health, 2019, 11:95-107. 						Google Scholar
						 | 
					
								| [33] | PARVAIZ A, KHATTAK J A, HUSSAIN I, et al. Salinity enrichment, sources and its contribution to elevated ground-water arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope (δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710.1-115710.13. 						Google Scholar
						 | 
					
								| [34] | SU C, WANG Y, XIE X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Processes& Impacts, 2015, 17(4):791-801. 						Google Scholar
						 | 
					
								| [35] | YAN J, CHEN J, ZHANG W, et al. Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods[J]. Journal of Geochemical Exploration, 2020, 217:106605.1-106605.10. 						Google Scholar
						 | 
					
								| [36] | BARBIERI M. Isotopes in hydrology and hydrogeology[J].Water, 2019, 11(2):291. 						Google Scholar
						 | 
					
								| [37] | YADAV K K, KUMAR S, PHAM Q B, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater:A comprehensive review[J].Ecotoxicology and Environmental Safety, 2019, 182:109362.1-109362.23. 						Google Scholar
						 | 
					
								| [38] | HARRINGTON G A, HERCZEG A L. The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios[J]. Chemical Geology, 2003, 199(3-4):281-292. 						Google Scholar
						 | 
					
								| [39] | SHAND P, DARBYSHIRE D P F, LOVE A J, et al. Sr isotopes in natural waters:Applications to source characterisation and water-rock interaction in contrasting landscapes[J].Applied Geochemistry, 2009, 24(4):574-586. 						Google Scholar
						 | 
					
								| [40] | 李小倩,周爱国,刘存富,等.河北平原深层地下水中氟含量与锶同位素组成的关系研究[J].水文,2008(04):38-42. 						Google Scholar
						 | 
					
								| [41] | GRIFFITH E M, SCHMITT A D, ANDREWS M G, et al.Elucidating modern geochemical cycles at local, regional, and global scales using calcium isotopes[J]. Chemical Geology, 2020, 534:1-13. 						Google Scholar
						 | 
					
								| [42] | HOLMDEN C, PAPANASTASSIOU D A, BLANCHON P, et al.δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments[J]. Geochimica et Cosmochimica Acta, 2012, 83:179-194. 						Google Scholar
						 | 
					
								| [43] | MOORE J, JACOBSON A D, HOLMDEN C. Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand[J]. Chemical Geology, 2013, 341: 110-127. 						Google Scholar
						 | 
					
								| [44] | Hindshaw R S, Bourdon B, Pogge Von Strandmann P A E, et al. The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland[J].Earth and Planetary Science Letters, 2013, 374:173-184. 						Google Scholar
						 | 
					
								| [45] | BRAZIER J M, SCHMITT A D, GANGLOFF S, et al.Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite) [J]. Geochimica et Cosmochimica Acta, 2019, 250:324-347. 						Google Scholar
						 | 
					
								| [46] | OCKERT C, GUSSONE N, KAUFHOLD S, et al. Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochimica et Cosmochimica Acta, 2013, 112:374-388. 						Google Scholar
						 | 
					
								| [47] | GUSSONE N, FILIPSSON H L, KUHNERT H. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls[J].Geochimica et Cosmochimica Acta, 2016, 173:142-159. 						Google Scholar
						 | 
					
								| [48] | HAROUAKA K, MANSOR M, MACALADY J L, et al.Calcium isotopic fractionation in microbially mediated gypsum precipitates[J]. Geochimica et Cosmochimica Acta, 2016, 184:114-131. 						Google Scholar
						 | 
					
								| [49] | GODFREY LV, HERRERA C, GAMBOA C, et al. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile[J]. Chemical Geology, 2019, 518:32-44. 						Google Scholar
						 | 
					
								| [50] | YUAN J, XU F, ZHENG T. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province:Insight from hydrochemical and isotopic analysis[J]. Journal of Hydrology, 2022, 605:127345. 						Google Scholar
						 | 
					
								| [51] | WIMPENNY J, COLLA C A, YU P, et al. Lithium isotope fractionation during uptake by gibbsite [J]. Geochimica et Cosmochimica Acta, 2015, 168:133-150. 						Google Scholar
						 | 
					
								| [52] | ALVAREZ-AMADO F, TARDANI D, POBLETE-GONZA LEZ C, et al. Hydrogeochemical processes controlling the water composition in a hyperarid environment: New insights from Li, B, and Sr isotopes in the Salar de Atacama[J].Science of the Total Environment, 2022, 835, 155470. 						Google Scholar
						 | 
					
								| [53] | WANNER C, BUCHER K, POGGE VON STRANDMANN P A E, et al. On the use of Li isotopes as a proxy for waterrock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel[J].Geochimica et Cosmochimica Acta, 2017, 198:396-418. 						Google Scholar
						 | 
					
								| [54] | HINDSHAW R S, TOSCA R, GOÛT T L, et al.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 2019, 250:219-237. 						Google Scholar
						 | 
					
								| [55] | MILLOT R, GUERROT C, INNOCENT C, et al. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin[J].Chemical Geology, 2011, 283:226-241. 						Google Scholar
						 | 
					
								| [56] | MURPHY M J, PORCELLI D, POGGE VON STRANDMANN P A E, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 245:154-171. 						Google Scholar
						 | 
					
								| [57] | ZHANG W, TAN H, ZHANG Y, et al. Boron geochemistry from some typical Xizang hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63:436-445. 						Google Scholar
						 | 
					
								| [58] | SAFFER D M, KOPF A J. Boron desorption and fractionation in subduction zone fore arcs: Implications for the sources and transport of deep fluids[J]. Geochemistry Geophysics Geosystems, 2016, 17(12):4992-5008. 						Google Scholar
						 | 
					
								| [59] | MAO H R, LIU C Q, ZHAO Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190:439-459. 						Google Scholar
						 |