2025 Vol. 45, No. 2
Article Contents

TANG Yi, HAO Xuefeng, PAN Meng, HE Yangpiao, PENG Yu, FU Xiaofang. 2025. Trace element characteristics of the Upper Permian Longtan Formation clay rocks in the Xingwen area of southern Sichuan: Sedimentary environment and Li mineralization indicators. Sedimentary Geology and Tethyan Geology, 45(2): 225-232. doi: 10.19826/j.cnki.1009-3850.2025.02003
Citation: TANG Yi, HAO Xuefeng, PAN Meng, HE Yangpiao, PENG Yu, FU Xiaofang. 2025. Trace element characteristics of the Upper Permian Longtan Formation clay rocks in the Xingwen area of southern Sichuan: Sedimentary environment and Li mineralization indicators. Sedimentary Geology and Tethyan Geology, 45(2): 225-232. doi: 10.19826/j.cnki.1009-3850.2025.02003

Trace element characteristics of the Upper Permian Longtan Formation clay rocks in the Xingwen area of southern Sichuan: Sedimentary environment and Li mineralization indicators

More Information
  • The clay rocks of the Upper Permian Longtan Formation, which are related to the weathering and deposition of igneous rocks from the Permian Emeishan Large Igneous Province (ELIP), are widely distributed across southern Sichuan, providing the geological background and metallogenic conditions for the formation of lithium and other critical metal resources. This study investigates the kaolin clay rocks of Upper Permian Longtan Formation in Xingwen area of southern Sichuan, analyzing trace elements such as lithium, and exploring the provenance, sedimentary environment, and indicators for Li mineralization. The aim is to provide insights for geological prospecting and related research on key metals such as Li in southern Sichuan. The results show that Li, Ga, Nb and other critical metals are enriched in the clay rocks, making this region a promising area for exploration of Li and other critical metals. The content of inactive elements and related parameters indicate that the source of the clay rocks is basaltic and medium-acid rocks from the ELIP. Additionally, the contents and indices of Ni, Ni/Co, and δU, which reflect the sedimentary environment, indicate that the clay rocks were deposited in a saline lagoonal environment in the transition area of sea and land. According to the geochemical indicators of trace elements, geological exploration should be arranged in the distribution area of lagoon sediments in the middle to outer zone (outward direction) of the ELIP.

  • 加载中
  • [1] Ballouard C,Poujol M,Boulvais P,et al.,2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology,44:231 − 234.

    Google Scholar

    [2] Benson T R,Coble M A,Rytuba J J,et al.,2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature communications,8(1):270. doi: 10.1038/s41467-017-00234-y

    CrossRef Google Scholar

    [3] Cullers R L,1994. The controls on the major and trace element variation of shale,siltstones,and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas,USA[J]. Geochimica et Cosmochimica Acta,58:4955 − 4972. doi: 10.1016/0016-7037(94)90224-0

    CrossRef Google Scholar

    [4] 陈聪,林良彪,余瑜,等,2022. 四川盆地南部CLD1井龙潭组地球化学特征及古环境意义[J]. 成都理工大学学报:自然科学版,49(2):225 − 238.

    Google Scholar

    Chen C,Lin L B,Y Y,Tian J C,et al.,2022. Geochemical characteristics and paleo-environmental significance of Longtan Formation in Well CLD1 in southern Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Natural Science Edition),49(2):225 − 238 (in Chinese with English abstract).

    Google Scholar

    [5] 邓守和,1986. 川南晚二叠世初期沉积黄铁矿成因分析[J]. 四川地质学报(1):8 − 20+89.

    Google Scholar

    Deng S H,1986. Genetic analysis of sedimentary pyrite in the early Late Permian period in southern Sichuan[J]. Sichuan Journal of Geology(1):8 − 20+89 (in Chinese with English abstract).

    Google Scholar

    [6] Fedo C M,Nesbitt H W,Young G M,1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,23:921 − 924.

    Google Scholar

    [7] 范宏鹏,叶霖,黄智龙,2021. 铝土矿(岩)中伴生的锂资源[J]. 矿物学报,41(4 − 5):382 − 390.

    Google Scholar

    Fan H P,Ye L,Huang Z L,2021. The associated lithium resource in bauxite (bauxite-bearing rock)[J]. Acta Mineralogica Sinica,41(4 − 5):382 − 390 (in Chinese with English abstract).

    Google Scholar

    [8] 付小方,郝雪峰,阮林森等,2023. 四川“三稀”矿产资源的成矿特征及找矿勘查方向[J]. 沉积与特提斯地质,43(1):1 − 18.

    Google Scholar

    Fu X F,Hao X F,Ruan L S,et al.,2023. Metallogenic characteristics and exploration prospecting of the 3R mineral resources in Sichuan,China[J]. Sedimentary Geology and Tethyan Geology,43(1):1 − 18 (in Chinese with English abstract).

    Google Scholar

    [9] Guo F,Fan W M,Wang Y J,et al.,2004. When did the Emeishan Mantle Plume activity start? Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China[J]. International Geology Review,46(3):6 − 234.

    Google Scholar

    [10] 衮民汕,蔡国盛,曾道国,等,2021. 贵州西部二叠系峨眉山玄武岩顶部古风化壳钪−铌−稀土矿化富集层的发现与意义[J]. 矿物学报,41(4 − 5):531 − 547.

    Google Scholar

    Gun M S,Cai G S,Zeng D G,et al.,2021. Discovery and significance of the Sc-Nb-REE-enriched zone in the paleocrust of weathering atop the Permian Emeishan basalt in the western Guizhou,China[J]. Acta Mineralogica Sinica,41(4 − 5):531 − 547 (in Chinese with English abstract).

    Google Scholar

    [11] Hatch J R,Leventhal J S,1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U. S. A. [J]. 99(1 − 3):0 − 82.

    Google Scholar

    [12] 黄智龙,范宏鹏,2021. 含铝岩系中的关键金属资源:代序[J]. 矿物学报,41(4 − 5):377 − 381.

    Google Scholar

    Huang Z L,Fan H P,2021. Critical metal resources in aluminous rock series:Preface[J]. Acta Mineralogica Sinica,41(4 − 5):377 − 381 (in Chinese with English abstract).

    Google Scholar

    [13] Jones B,Manning D A C,1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,111(1):111 − 129.

    Google Scholar

    [14] 金中国,周家喜,黄智龙,等,2015. 黔北务−正−道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质,42:1910 − 1918.

    Google Scholar

    Jin Z G,Zhou J X,Huang Z L,et al.,2015. The distribution of associated elements Li,Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng’an-Daozhen bauxite ore district,northern Guizhou Province[J]. Geology of China,42:1910 − 1918 (in Chinese with English abstract).

    Google Scholar

    [15] 贾永斌,于文修,温汉捷等,2023. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报,41(1):170 − 182.

    Google Scholar

    Jia Y B,Yu W X,Wen H J,et al.,2023. Geochemical characteristics and sedimentary environment of Li-rich clay rocks at the southern margin of the central Yunnan Basin[J]. Acta Sedimentologica Sinica,41(1):170 − 182 (in Chinese with English abstract).

    Google Scholar

    [16] Kesler S E,Gruber P W,Medina P A,et al.,2012. Global lithium resources:Relative importance of pegmatite,brine and other deposits[J]. Ore Geology Reviews,48:55 − 69. doi: 10.1016/j.oregeorev.2012.05.006

    CrossRef Google Scholar

    [17] Lo C H,Chung S L,Lee T Y,2002. Age of the Emeishan flood magmatism and relations to Permian - Triassic boundary events[J]. Earth and Planetary Science Letters,198(3 − 4):449 − 458.

    Google Scholar

    [18] 凌坤跃,温汉捷,张起钻,等,2021. 广西平果上二叠统合山组关键金属锂和铌的超常富集与成因[J]. 中国科学:地球科学,51(6):853 − 873. doi: 10.1360/SSTe-2020-0140

    CrossRef Google Scholar

    Ling K Y,Wen H J,Zhang Q Z,et al.,2021. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo,Guangxi,China[J]. Scientia Sinica (Terrae),51(6):853 − 873 (in Chinese with English abstract). doi: 10.1360/SSTe-2020-0140

    CrossRef Google Scholar

    [19] 罗伟,彭静,李生红,等,2024. 贵州北部马鬃岭铝土矿床超常富锂岩系中锂的赋存状态及来源[J]. 东华理工大学学报(自然科学版),47(4):312 − 323.

    Google Scholar

    Luo W,Peng J,Li S H,et al.,2024. The occurrence and source of lithium in the ultra-lithium-rich rock series of the Mazongling bauxite deposit,northern Guizhou,China[J]. Journal of East China University of Technology (Natural Science),47(4):312 − 323 (in Chinese with English abstract).

    Google Scholar

    [20] 毛景文,杨宗喜,谢桂青等,2019. 关键矿产——国际动向与思考[J]. 矿床地质,38(4):689 − 698.

    Google Scholar

    Mao J W,Yang Z X,Xie G Q,et al.,2019. Critical minerals:International trends and thinking[J]. Mineral Deposits,38(4):689 − 698 (in Chinese with English abstract).

    Google Scholar

    [21] Shellnutt J G,2014. The Emeishan large igneous province:A synthesis[J]. Geoscience Frontiers,5(3):369 − 394. doi: 10.1016/j.gsf.2013.07.003

    CrossRef Google Scholar

    [22] 苏之良,杜蔺,巩鑫,等,2021. 黔北道真新民铝土矿含铝岩系中关键金属富集特征与资源潜力[J]. 矿物学报,41(4 − 5):400 − 412.

    Google Scholar

    Su Z L,Du L,Gong X,et al.,2021. Characteristics of the critical metal enrichment and the resource potential for bauxite-bearing rocks in the Xinmin bauxite deposit in Daozhen County,Guizhou Province,China[J]. Acta Mineralogica Sinica,41(4 − 5):400 − 412 (in Chinese with English abstract).

    Google Scholar

    [23] Taylor S R,McLennan S M,1985. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell:1 − 312.

    Google Scholar

    [24] 田景春, 张翔, 2016. 沉积地球化学[M]. 北京: 地质出版社: 63 − 64.

    Google Scholar

    Tian J C,Zhang X,2016. Sedimentary geochemistry [M] Beijing:Geological Publishing House:63 − 64.

    Google Scholar

    [25] Wronkiewicz D J,Condie K C,1989. Geochemistry and provenance of sediments from the Pongola Supergroup,South Africa:Evidence for a 3.0-Ga-old continental craton[J]. Geochimica et Cosmochimica Acta,53:1537 − 1549.

    Google Scholar

    [26] 王登红,李沛刚,屈文俊,等,2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J]. 中国科学:地球科学,43(1):44 − 51. doi: 10.1016/0016-7037(89)90236-6

    CrossRef Google Scholar

    Wang D H,Li P G,Qu W J,et al.,2013. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit,Guizhou,China[J]. Scientia Sinica (Terrae),43(1):44 − 51 (in Chinese with English abstract). doi: 10.1016/0016-7037(89)90236-6

    CrossRef Google Scholar

    [27] 王登红, 李沛刚, 屈文俊, 等, 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J]. 中国科学: 地球科学, 43(1): 44 − 51.

    Google Scholar

    Wang R J,Wang D H,Li J K,et al.,2015. Rare earth,rare and scattered mineral resources and their development and utilization [M]. Beijing:Geological Publishing House:1 − 37.

    Google Scholar

    [28] 王秋舒,2016. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业,25(3):11 − 15.

    Google Scholar

    Wang Q S,2016. Analysis of global lithium resources exploration and development,supply and demand situation[J]. China Mining Magazine,25(3):11 − 15 (in Chinese with English abstract).

    Google Scholar

    [29] 吴福元,刘小驰,纪伟强,等,2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学,47(7):745 − 765.

    Google Scholar

    Wu F Y,Liu X C,Ji W Q,et al.,2017. Highly fractionated granites:Recognition and research[J]. Scientia Sinica (Terrae),47(7):745 − 765 (in Chinese with English abstract).

    Google Scholar

    [30] 温汉捷,罗重光,杜胜江,等,2020. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报,65(1):53 − 59. doi: 10.3969/j.issn.1004-4051.2016.03.003

    CrossRef Google Scholar

    Wen H J,Luo C G,Du S J,et al.,2020. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin,65(1):53 − 59 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4051.2016.03.003

    CrossRef Google Scholar

    [31] 吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745 − 765. doi: 10.1360/N072016-00139

    CrossRef Google Scholar

    Yang J H,Cawood P A,Du Y S,2015. Voluminous silicic eruptions during late Permian Emeishan igneous province and link to climate cooling[J]. Earth and Planetary Science Letters,432(1):166 − 175. doi: 10.1360/N072016-00139

    CrossRef Google Scholar

    [32] 于鑫,杨江海,刘建中,等,2017. 黔西南晚二叠世龙潭组物源分析及区域沉积古地理重建[J]. 地质学报,91(6):1374 − 1385.

    Google Scholar

    Yu X,Yang J H,Liu J Z,et al.,2017. Provenance of the Late Permian Longtan Formation in SW Guizhou Province and implication for reconstruction of regional sedimentation and paleogeography[J]. Acta Geologica Sinica,91(6):1374 − 1385 (in Chinese with English abstract).

    Google Scholar

    [33] 杨季华,罗重光,杜胜江,等,2020. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报,40(6):723 − 733. doi: 10.1016/j.jpgl.2015.09.050

    CrossRef Google Scholar

    Yang J H,Luo C G,Du S J,et al.,2020. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica,40(6):723 − 733 (in Chinese with English abstract). doi: 10.1016/j.jpgl.2015.09.050

    CrossRef Google Scholar

    [34] 赵振华,熊小林,王强,等,2008. 铌与钽的某些地球化学问题[J]. 地球化学,37:304 − 320.

    Google Scholar

    Zhao Z H,Xiong X L,Wang Q,et al.,2008. Some aspects on geochemistry of Nb and Ta[J]. Geochemistry,37(4):304 − 320 (in Chinese with English abstract).

    Google Scholar

    [35] 张启明,秦建华,廖震文,等,2015. 滇东南晚二叠世铝土矿地球化学特征及物源分析[J]. 现代地质,29(1):32 − 44.

    Google Scholar

    Zhang Q M,Qin J H,Liao Z W,et al.,2015. Geochemical characteristics and material source of the Late Permian bauxite deposits in southeastern Yunnan Province[J]. Geoscience,29(1):32 − 44 (in Chinese with English abstract).

    Google Scholar

    [36] 赵振华, 熊小林, 王强, 等, 2008. 铌与钽的某些地球化学问题[J]. 地球化学, 37: 304 − 320.

    Google Scholar

    Zhao L X,Dai S F,Graham I T,et al.,2016. New insights into the lowest Xuanwei Formation in eastern Yunnan Province,SW China:Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction[J]. Lithos,264(1):375 − 391.

    Google Scholar

    [37] 田景春,张翔,2016. 沉积地球化学[M]. 北京:地质出版社:63 − 64.

    Google Scholar

    Zhang Q M, Qin J H, Liao Z W, et al., 2015. Geochemical characteristics and material source of the Late Permian bauxite deposits in southeastern Yunnan Province[J]. Geoscience, 29(1): 32 − 44.

    Google Scholar

    [38] 王瑞江,王登红,李健康,等,2015. 稀有稀土稀散矿产资源及其开发利用[M]. 北京:地质出版社:1 − 37. doi: 10.1016/j.lithos.2016.08.037

    CrossRef Google Scholar

    Zhao L X, Dai S F, Graham I T, et al., 2016. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction[J]. Lithos, 264(1): 375 − 391. doi: 10.1016/j.lithos.2016.08.037

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(113) PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint