2025 Vol. 45, No. 1
Article Contents

WANG Shuo, FANG Yi, TANG Xiaoyuan, DAI Junyao, WANG Mengxu. 2025. Geochemistry, U-Pb dating and Hf isotope characteristics of Mangzhang granite in Tengchong block. Sedimentary Geology and Tethyan Geology, 45(1): 187-199. doi: 10.19826/j.cnki.1009-3850.2024.12008
Citation: WANG Shuo, FANG Yi, TANG Xiaoyuan, DAI Junyao, WANG Mengxu. 2025. Geochemistry, U-Pb dating and Hf isotope characteristics of Mangzhang granite in Tengchong block. Sedimentary Geology and Tethyan Geology, 45(1): 187-199. doi: 10.19826/j.cnki.1009-3850.2024.12008

Geochemistry, U-Pb dating and Hf isotope characteristics of Mangzhang granite in Tengchong block

More Information
  • The Tengchong area, situated within the Sanjiang Tethys tectonic belt, exhibits frequent Mesozoic-Cenozoic magmatic activity and a significant presence of granite. This study investigates the petrogenesis and geological significance of Mangzhang granite in the Tengchong block through petrography, whole rock geochemistry, zircon U-Pb chronology, and Hf isotope analyses. The results show that the main types of rocks in this area are syenite granite with high SiO2 contents (from 74.41% to 76.55%) and high potassium abundances (K2O/Na2O ratio is greater than 1), peraluminous (A/CNK value varies from 1.34 to 1.48), and belong to S-type granite. Eu and Sr are strongly negative anomalies, Rb and Pb are obviously enriched. At the same time, in the Al2O3/(MgO+FeO)−CaO/(MgO+FeO) diagram of Paleogene granite in the Mangzhang area, the samples fall in the metamorphic argillaceous rocks, metamorphic gritstone, and clay-rich source rocks. Zircon εHf(t) values in this study range from -9.14 to -7.73, corresponding to a two-stage model age (tDM2) of 16991613 Ma. The weighted average age of zircon U-Pb is (49.81±0.35) Ma, indicating that the magma emplacement time belongs to the early Eocene. The above characteristics suggest that the granite in this area may be the product of partial melting of the Mesoproterozoic metamorphic basement, which is derived from the ancient clay-rich metamorphic argillaceous rocks and some metamorphic greywackes. Combined with previous research results, it is believed that the syenite granite in the study area, as well as the 60–50 Ma and 50–40 Ma magmatic rocks that widely developed in the Lhasa block formed in the same collision environment, which indicating that the Eocene granite with the characteristics of the same collision in Tengchong is a response to the subduction and collision between the Indian plate and Tengchong-Lhasa block in this period.

  • 加载中
  • [1] Achache J,Courillot V,Zhou Y,1984. Paleo-geographic and tectonic evolution of southern Xizang since Middle Cretaceous time:New paleomagnetic data and synthesis[J]. Geophysics,89:10311 − 10399. doi: 10.1029/JB089iB12p10311

    CrossRef Google Scholar

    [2] Altherr R,Holl A,Hegner E,et al.,2000. High potassium,calc -alkaline I-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos,50 (1-3) :51 − 73.

    Google Scholar

    [3] Amelin Y,Lee D C,Halliday A N,2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta,64:4205 − 4225. doi: 10.1016/S0016-7037(00)00493-2

    CrossRef Google Scholar

    [4] Bachmann O,Dungan A M,Bussy F,2005. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body,Colorado[J]. Contributions to Mineralogy and Petrology,149(3):338 − 349.

    Google Scholar

    [5] Ballouard C,Poujol M,Boulvais P,et al.,2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology,44 (3):231 − 234.

    Google Scholar

    [6] Barbarin B,1996. Genesis of the two main types of peraluminous granitoids[J]. Geology,24:295 − 298.

    Google Scholar

    [7] Besse J,Courtillot V,Pozzi J P,et al.,1984. Paleomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture[J]. Nature,311:621 − 626.

    Google Scholar

    [8] Blichert-Toft J,Albarède F,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters,148(1-2):243 − 258. doi: 10.1016/S0012-821X(97)00040-X

    CrossRef Google Scholar

    [9] 曹华文,张寿庭,林进展,等,2013. 滇西锡矿带地质特征与成矿构造背景[J]. 成都理工大学学报:自然科学版,40(4):457 − 467. doi: 10.3969/j.issn.1671-9727.2013.04.14

    CrossRef Google Scholar

    Cao H W,Zhang S T,Lin J Z,et al.,2013. Geologic characteristics and tectonic settings of the deposits in West Yunnan,China[J]. Journal of Chengdu University of Technology,40(4):457 − 467 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2013.04.14

    CrossRef Google Scholar

    [10] 陈永清,卢映祥,赵红娟,等,2013. 滇西腾冲地块小场钼矿化花岗岩的锆石SHRIMP U−Pb定年、地球化学及其构造意义[J]. 地学前缘,20(5):1 − 14.

    Google Scholar

    Chen Y Q,Lu Y X,Zhao H J,et al.,2013. Zircon SHRIMP U-Pb geochronology,geochemistry of the Xiaochang monzonitic granite with Mo mineralization and implications for tectonic setting in Tengchong Block,Western Yunnan Terrain,Southwestern China[J]. Earth Science Frontiers,20(5):1 − 14 (in Chinese with English abstract).

    Google Scholar

    [11] 丛峰,林仕良,李再会,等,2009. 滇西腾冲地块片麻状花岗岩的锆石U−Pb年龄[J]. 地质学报,83:651 − 658. doi: 10.3321/j.issn:0001-5717.2009.05.006

    CrossRef Google Scholar

    Cong F,Lin S L,Li Z H,et al.,2009. Zircon U-Pb ages of gneiss granites in Tengchong Block,western Yunnan[J]. Acta Geologica Sinica,83:651 − 658 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.05.006

    CrossRef Google Scholar

    [12] 丛峰,林仕良,唐红峰,等,2010. 滇西梁河三叠纪花岗岩的锆石微量元素、U−Pb 和Hf同位素组成[J]. 地质学报(8):1155 − 1164.

    Google Scholar

    Cong F,Lin S L,Tang H F,et al.,2010. Trace elements and Hf isotope compositions and U-Pb age of igneous zircons from the Triassic granite in Lianghe,western Yunnan[J]. Acta Geologica Sinica(8):1155 − 1164 (in Chinese with English abstract).

    Google Scholar

    [13] 崔晓琳,张琦玮,吴华英,等,2022. 腾冲地块晚白垩世-古近纪富锡花岗岩成因:岩浆源区及分异演化条件[J]. 岩石学报,38(01):253 − 266.

    Google Scholar

    Cui X L,Zhang Q W,Wu H Y,et al.,2022. Genesis of Late Cretaceous-Paleogene Tin-rich granites in Tengchong Block:magmatic source region and differentiation and evolution conditions[J]. Acta Petrologica Sinica,38(01):253 − 266 (in Chinese with English abstract).

    Google Scholar

    [14] DeCelles P G,Gehrels G E,Nijman Y,et al.,2015. Detrital geochronology and geochemistry of cretaceous early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis[J]. Earth Planetary Science Letters,227(3−4):313 − 330.

    Google Scholar

    [15] Deering C D,Bachmann,2010. Trace element indicators of crystal accumulation in silicic igneous rocks[J]. Earth and Planetary Science Letters,297(1-2):324 − 331.

    Google Scholar

    [16] 董方浏,侯增谦,高永丰,等,2006. 滇西腾冲新生代花岗岩:成因类型与构造意义[J]. 岩石学报,22(4):927 − 937.

    Google Scholar

    Dong F L,Hou Z Q,Gao Y F,et al.,2006. Cenozoic granitoid in Tengchong,western Yunnan:Genesis type and implication for tectonics[J]. Acta Petrologica Sinica,22(4):927 − 937 (in Chinese with English abstract).

    Google Scholar

    [17] 董美玲,董国臣,莫宣学,等,2013. 滇西保山地块中−新生代岩浆作用及其构造意义[J]. 岩石学报,29(11):3901 − 3913.

    Google Scholar

    Dong M L,Dong G C,Mo X X,et al.,2013. The Mesozoic Cenozoic magmatism in Baoshan Block,western Yunnan and its tectonic significance[J]. Acta Petrologica Sinica,29(11):3901 − 3913 (in Chinese with English abstract).

    Google Scholar

    [18] 高永娟,林仕良,丛峰,等,2012. 滇西腾冲地块东南缘早白垩世火山岩锆石U-Pb定年及地质意义[J]. 沉积与特提斯地质,32(4):59 − 64. doi: 10.3969/j.issn.1009-3850.2012.04.009

    CrossRef Google Scholar

    Gao Y J,Lin S L,Cong F,et al.,2012. LA-LCP-MS zircon U-Pb dating and geological implications for the Early Cretaceous volcanic rocks on the southeastern margin of the Tengchong block,western Yunnan[J]. Sedimentary Geology and Tethyan Geology,32(4):59 − 64 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2012.04.009

    CrossRef Google Scholar

    [19] 高永娟,林仕良,丛峰,等,2014. 滇西腾冲−梁河古近纪花岗岩锆石U−Pb定年、Hf同位素及地球化学[J]. 地质学报,88(1):63 − 71.

    Google Scholar

    Gao Y J,Lin S L,Cong F,et al.,2014. Zircon U-Pb geochronology,zircon Hf isotope and bulk geochemistry of Paleogene granite in the Tengchong-Lianghe area,western Yunan[J]. Acta Geologica Sinica,88(1):63 − 71 (in Chinese with English abstract).

    Google Scholar

    [20] Garzanti E,Baud A,Mascle G,1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya,India)[J]. Geodinaca Acta (Paris),1(4−5):297 − 312.

    Google Scholar

    [21] Griffin W L,Pearson N J,Belousova E,et al.,2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochemical et Cosmochimica Acta,64(1):133 − 147.

    Google Scholar

    [22] Harris N B,Pearce J A,Tindle A G,1986. Geochemical characteristics of collision-zone magmatism[J]. Geological Society,London,Special Publications,19(1):67 − 81. doi: 10.1144/GSL.SP.1986.019.01.04

    CrossRef Google Scholar

    [23] 洪大卫,王涛,童英,2007. 中国花岗岩概述[J]. 地质论评(S1):9 − 16.

    Google Scholar

    Hong D W,Wang T,Tong Y,2007. An outline about granitoids in China[J]. Geological Review(S1):9 − 16 (in Chinese with English abstract).

    Google Scholar

    [24] 侯增谦,杨竹森,徐文艺,等,2006. 青藏高原碰撞造山带:I. 主碰撞造山成矿作用[J]. 矿床地质(4):337 − 358. doi: 10.3969/j.issn.0258-7106.2006.04.001

    CrossRef Google Scholar

    Hou Z Q,Yang Z S,Xu W Y,2006. Xizang Plateau collisional orogenic belt:I. Main collisional orogenic mineralization[J]. Geology of Ore Deposits(4):337 − 358 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2006.04.001

    CrossRef Google Scholar

    [25] Hu X M,A Xue,W Garzanti E,et al.,2022. Exploring a lost ocean in the Xizang Plateau:Birth,growth,and demise of the Bangong-Nujiang Ocean[J]. Earth-Science Reviews,229(Suppl C):104031.

    Google Scholar

    [26] Hu Z C,Liu Y S,Gao S,et al.,2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry,27(9):1391 − 1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [27] Hu Z C,Zhang W,Liu Y S,et al.,2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis[J]. Analytical Chemistry,87(2):1152 − 1157. doi: 10.1021/ac503749k

    CrossRef Google Scholar

    [28] Jaeger J J,Courtillot V,Tapponinner P,1989. Palaeontological view of the Deccan Traps,the Cretaceous/Tertiary boundary and the India-Asia Collision[J]. Geology,17:316 − 319.

    Google Scholar

    [29] 季建清,1998. 腾冲−勐连−那邦地区岩石学与新生代岩石圈构造演化[D]. 中国科学院地质与地球物理研究所.

    Google Scholar

    Ji J Q,1998. Petrology and tectonic evolution of Cenozoic lithosphere in Tengchong-Menglian-Napang area[D]. Institute of Geology and Geophysics (in Chinese with English abstract).

    Google Scholar

    [30] Kemp A I,Hawkesworth C J,Foster G L,et al.,2007. Magmatic and crustal differentiation history ofgranitic rocks from Hf-O isotopes in zircon[J]. Science,315(5814):980 − 983.

    Google Scholar

    [31] 李再会,林仕良,丛峰,等,2012. 滇西腾冲−梁河地块早白垩世岩浆作用[J]. 矿物岩石地球化学通报,31(6):590 − 598. doi: 10.3969/j.issn.1007-2802.2012.06.006

    CrossRef Google Scholar

    Li Z H,Lin S L,Cong F,et al.,2012. Early Cretaceous magmatism in Tengchong-Lianghe Block,westem Yunnan[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(6):590 − 598 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2012.06.006

    CrossRef Google Scholar

    [32] 林进展,曹华文,张寿庭,等,2015. 青藏高原东南缘腾冲来利山A型花岗岩地球化学特征、锆石U-Pb定年及其构造意义[J]. 大地构造与成矿学,39(5):959 − 971.

    Google Scholar

    Lin J J,Cao H W,Zhang S T,et al.,2015. Geochemical characteristics, zircon U-Pb dating and its tectonic significance of A-type granites in Lilishan, Tengchong, southeast margin of Xizang Plateau[J]. Geotectonics and Metallogeny,39(5):959 − 971 (in Chinese with English abstract).

    Google Scholar

    [33] 刘军平,田素梅,丛峰,等,2017. 滇西澜沧江构造带南段沙乐花岗岩的锆石U-Pb年龄、地球化学特征及其地质意义[J]. 沉积与特提斯地质,37(4):29 − 40. doi: 10.3969/j.issn.1009-3850.2017.04.005

    CrossRef Google Scholar

    Liu J P,Tian S M,Cong F,et al.,2017. The Shale granites from the southern part of the Lancangjiang tectonic belt,western Yunnan:Zircon U-Pb age,geochemistry and geological implications[J]. Sedimentary Geology and Tethyan Geology,37(4):29 − 40 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.04.005

    CrossRef Google Scholar

    [34] Liu Y S,Gao S,Hu Z C,et al.,2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology,51:537 − 571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [35] Liu Y S,Hu Z C,Gao S,et al.,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,257:34 − 43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [36] 吕伯西, 王增, 张能德, 等, 1993. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社: 1 − 328.

    Google Scholar

    Lü B X,Wang Z,Zhang N D,et al.,1993. Granitoids and their metallogenic specificity in Sanjiang area[M]. Beijing:Geological Publishing House:1 − 328.

    Google Scholar

    [37] 马莉燕,范蔚茗,王岳军,等,2013. 那邦地区花岗片麻岩的锆石U−Pb年代学及Hf同位素组成特征[J]. 大地构造与成矿学,37(2):273 − 283.

    Google Scholar

    Ma L Y,Fan W M,Wang Y J,et al.,2013. Zircon U-Pb geochronology and Hf isotopes of the granitic gneisses in the Nabang area,western Yunnan Province[J]. Geotectonica et Metallogenia,37(2):273 − 283 (in Chinese with English abstract).

    Google Scholar

    [38] 马莉燕, 范蔚茗, 王岳军, 等, 2013. 那邦地区花岗片麻岩的锆石U−Pb年代学及Hf同位素组成特征[J]. 大地构造与成矿学, 37(2): 273 − 283. doi: 10.3969/j.issn.1001-1552.2013.02.010

    CrossRef Google Scholar

    Maniar P D,Piccoli P M,1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,101(5):635 − 643. doi: 10.3969/j.issn.1001-1552.2013.02.010

    CrossRef Google Scholar

    [39] 毛英,毛琼,郭增强,等,2017. 滇西腾冲地块新生代花岗岩锆石U−Pb年代学及地球化学特征[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会论文集:178−179. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    Mao Y,Mao Q,Guo Z Q,et al.,2017. Zircon U-Pb Chronology and geochemistry of Cenozoic granites in Tengchong Block,western Yunnan[C]//The 9th National Congress and the 16th Academic Annual Meeting of the Chinese Society for Mineralogy,Petrology and Geochemistry:178−179 (in Chinese with English abstract). doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [40] 毛英, 毛琼, 郭增强, 等, 2017. 滇西腾冲地块新生代花岗岩锆石U−Pb年代学及地球化学特征[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会论文集: 178−179.

    Google Scholar

    Miller K G,Fairbanks R G,Moutain G S,1987. Tertiary oxygen isotope synthesis,sea level history,and continental margin erosion[J]. Paleoceanography,2:1 − 19.

    Google Scholar

    [41] 莫宣学,潘桂棠,2006. 从特提斯到青藏高原形成:构造−岩浆事件的约束[J]. 地学前缘,13(6):43 − 51. doi: 10.1029/PA002i001p00001

    CrossRef Google Scholar

    Mo X X,Pan G T,2006. From the Tethys to the formation of the Qinghai-Xizang Plateau:Constrained by tectono-magmatic events[J]. Earth Science Frontiers,13(6):43 − 51 (in Chinese with English abstract). doi: 10.1029/PA002i001p00001

    CrossRef Google Scholar

    [42] 莫宣学,赵志丹,邓晋福,2003. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘,10(3):135 − 148. doi: 10.3321/j.issn:1005-2321.2006.06.007

    CrossRef Google Scholar

    Mo X X,Zhao Z Z,Deng J F,2003. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers,10(3):135 − 148 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.06.007

    CrossRef Google Scholar

    [43] 聂飞,范文玉,董国臣,等,2015. 滇西新街岩体LA−ICP−MS锆石U−Pb年龄、Hf同位素和地球化学及其构造意义[J]. 地质通报,34(10):1837 − 1847. doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    Nie F,Fan W Y,Dong G C,et al.,2015. LA-ICP-MS zircon U-Pb chronology,Hf isotopes and geochemistry of the Xinjie granites in western Yunnan and their implications[J]. Geological Bulletin of China,34(10):1837 − 1847 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    [44] 潘桂棠,王立全,耿全如,等,2020. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质,40(3):1 − 19. doi: 10.3969/j.issn.1671-2552.2015.10.008

    CrossRef Google Scholar

    Pan G T,Wang L Q,Geng Q R,et al.,2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology,40(3):1 − 19 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.10.008

    CrossRef Google Scholar

    [45] 潘桂棠, 王立全, 耿全如, 等, 2020. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1 − 19.

    Google Scholar

    Pecerillo A,Taylor S R,1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contributions to Mineralogy and Petrology,58(1):63 − 81.

    Google Scholar

    [46] Rage J C,Cappetta H,Hartenberger J L,et al.,1995. Collision ages[J]. Nature,375:286. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [47] Rickwood S C,1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos,22:247 − 263.

    Google Scholar

    [48] Rowley D B,1996. Age of initiation of collision between India and Asia:A review of stratigraphic data[J]. Earth and Planetary Science Letters,145(1−4):1 − 13.

    Google Scholar

    [49] Searle M P,Windley B F,Coward M P,et al.,1987. The closing of Tethys and the tectonics of the Himalaya[J]. Science Direct,98(6):678 − 701.

    Google Scholar

    [50] Söderlund U,Patchett P J,Vervoort J D,et al.,2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters,219(3−4):311 − 324.

    Google Scholar

    [51] Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society,London,Special Publication,42:313 − 346.

    Google Scholar

    [52] 孙转荣,董国臣,赵作新,等,2017. 滇西来利山花岗岩年代学、地球化学特征及其壳源部分熔融成因[J]. 中国地质,44(06):1140 − 1158. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Sun Z R,Dong G C,Zhao Z X,et al.,2017. Chronology,geochemistry and origin of shell source partial melting of Lilishan granite in western Yunnan[J]. Geology of China,44(06):1140 − 1158 (in Chinese with English abstract). doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [53] 孙转荣,2020. 腾冲地块中-新生代花岗岩演化及其锡成矿意义[D]. 中国地质大学(北京).

    Google Scholar

    Sun Z R,2020. Evolution of meso-Cenozoic granites in Tengchong Block and its significance for Tin mineralization [D]. China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [54] 孙转荣, 2020. 腾冲地块中-新生代花岗岩演化及其锡成矿意义[D]. 中国地质大学(北京).

    Google Scholar

    Sylvester P J,1998. Post-collisional strongly peraluminous granites[J]. Lithos,45 (1−4) :29 − 44.

    Google Scholar

    [55] Taylor R,McLennan S M,1985. The continental crust:Its composition and evolution[M]. Oxford:Blackwell:1 − 328.

    Google Scholar

    [56] Vervoort J D,Pachelt P J,Gehrel S G E,et al.,1996. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature,379:624 − 627.

    Google Scholar

    [57] 王成善,李祥辉,胡修棉,2003. 再论印度—亚洲大陆碰撞的启动时间[J]. 地质学报,77(1):16 − 24. doi: 10.1038/379624a0

    CrossRef Google Scholar

    Wang C S,Li X H,Hu X M,2003. On the initiation time of the India-Asia continental Collision[J]. Acta Geologica Sinica,77(1):16 − 24 (in Chinese with English abstract). doi: 10.1038/379624a0

    CrossRef Google Scholar

    [58] 吴福元,李献华,郑永飞,等,2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,23(2):185 − 220. doi: 10.3321/j.issn:0001-5717.2003.01.003

    CrossRef Google Scholar

    Wu F Y,Li X H,Zheng Y F,et al.,2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica,23(2):185 − 220 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2003.01.003

    CrossRef Google Scholar

    [59] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185 − 220.

    Google Scholar

    Xiao Q H,Deng J F,Ma D Q,et al.,2002. Thinking and methods of granite research[M]. Beijing:Geological Publishing House:1 − 294.

    Google Scholar

    [60] 肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社: 1 − 294.

    Google Scholar

    Xu Y G,Yang Q J,Lan J B,et al.,2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong−Tengliang−Yingjiang area,western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences,53(7):151 − 175.

    Google Scholar

    [61] 杨启军,徐义刚,黄小龙,等,2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J]. 岩石学报,22(4):817 − 834.

    Google Scholar

    Yang Q J,Xu Y G,Huang X L,et al.,2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt,western Yunnan:Tectonic implications[J]. Acta Petrologica Sinica,22(4):817 − 834 (in Chinese with English abstract).

    Google Scholar

    [62] 杨启军,徐义刚,黄小龙,等,2009. 滇西腾冲−梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报,25(5):1092 − 1104.

    Google Scholar

    Yang Q J,Xu Y G,Huang X L,et al.,2009. Geochronology and geochemistry of granites in the Tengliang area,western Yunnan: Tectonic implication[J]. Acta Petrologica Sinica,25(5):1092 − 1104 (in Chinese with English abstract).

    Google Scholar

    [63] 尹福光,唐渊,徐波,2021. 西南三江地区新生代走滑造山[J]. 沉积与特提斯地质,41(1):1 − 14. doi: 10.3321/j.issn:1000-0569.2006.04.006

    CrossRef Google Scholar

    Yin F G,Tang Y,Xu B,2021. Cenozoic strike slip orogeny in Sanjiang area,Southwestern China[J]. Sedimentary Geology and Tethyan Geology,41(1):1 − 14 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2006.04.006

    CrossRef Google Scholar

    [64] 张洪瑞,侯增谦,2018. 大陆碰撞带成矿作用:年轻碰撞造山带对比研究[J]. 中国科学:地球科学,48 (12):1629 − 1654.

    Google Scholar

    Zhang H R,Hou Z Q,2018. Mineralization in continental collision zones:a comparative study of young collision orogen zones[J]. Chinese Scientific Journals:Earth science,48 (12):1629 − 1654 (in Chinese with English abstract).

    Google Scholar

    [65] 张伟,张寿庭,曹华文,等,2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义[J]. 成都理工大学学报:自然科学版,41(3):318 − 328.

    Google Scholar

    Zhang W,Zhang S T,Cao H W,et al.,2014. Characteristics of chlorite minerals from Xiaolonghe tin deposit in West Yunnan,China and their geological implications[J]. Journal of Chengdu University of Technology,41(3):318 − 328 (in Chinese with English abstract).

    Google Scholar

    [66] 张璋,耿全如,彭智敏,等,2011. 班公湖−怒江成矿带西段材玛花岗岩体岩石地球化学及年代学[J]. 沉积与特提斯地质,31(4):86 − 96.

    Google Scholar

    Zhang Z,Geng Q R,Peng Z M,et al.,2011. Geochemistry and geochronology of the Caima granites in the western part of the Bangong Lake-Nujiang metallogenic zone,Xizang[J]. Sedimentary Geology and Tethyan Geology,31(4):86 − 96 (in Chinese with English abstract).

    Google Scholar

    [67] 赵少伟,2017. 腾冲地块晚白垩世—早始新世花岗岩类成因机制及大陆动力学意义[D]. 西北大学.

    Google Scholar

    Zhao S W,2017. Petrogenesis and continental geodynamic implications of late Cretaceous to early Eocene granitic rocks in Tengchong Block[D]. Northwest University (in Chinese with English abstract).

    Google Scholar

    [68] 赵少伟,赖绍聪,秦江锋,等,2017. 腾冲地块梁河早始新世花岗岩成因机制及其地质意义[J]. 岩石学报,33(1):191 − 203. doi: 10.3969/j.issn.1009-3850.2011.04.013

    CrossRef Google Scholar

    Zhao S W,Lai S C,Qin J F,et al.,2017. The Petrogenesis and implications of the early Eocene granites in Lianghe area,Tengchong Block[J]. Acta Petrologica Sinica,33(1):191 − 203 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2011.04.013

    CrossRef Google Scholar

    [69] 周洁,王根厚,张莉,2017. 滇西小龙潭矿区始新世岩浆岩的成因及其地质意义[J]. 成都理工大学学报:自然科学版,44(3):334 − 349.

    Google Scholar

    Zhou J,Wang G H,Zhang L,2017. Petrogenesis and geological significance of the Eocene porphyry in the Xiaolongtan mining area of the western Yunnan,China[J]. Journal of Chengdu University of Technology,44(3):334 − 349 (in Chinese with English abstract).

    Google Scholar

    [70] 吕伯西,王增,张能德,等,1993. 三江地区花岗岩类及其成矿专属性[M]. 北京:地质出版社:1 − 328.

    Google Scholar

    Zhao S W, Lai S C, Qin J F, et al., 2017. The Petrogenesis and implications of the early Eocene granites in Lianghe area, Tengchong Block[J]. Acta Petrologica Sinica, 33(1): 191 − 203.

    Google Scholar

    [71] 肖庆辉,邓晋福,马大铨,等,2002. 花岗岩研究思维与方法[M]. 北京:地质出版社:1 − 294. doi: 10.3969/j.issn.1671-9727.2017.03.06

    CrossRef Google Scholar

    Zhou J, Wang G H, Zhang L, 2017. Petrogenesis and geological significance of the Eocene porphyry in the Xiaolongtan mining area of the western Yunnan, China[J]. Journal of Chengdu University of Technology, 44(3): 334 − 349. doi: 10.3969/j.issn.1671-9727.2017.03.06

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(268) PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint