2024 Vol. 44, No. 4
Article Contents

WANG Dongbing, QIN Yadong, ZENG Jipei, LUO Liang, TANG Yuan, ZENG Xiaowen, HAN Mingming. 2024. Early Miocene uplift of the eastern Himalayan syntaxis: Constraints from U-Pb ages of zircon and rutile. Sedimentary Geology and Tethyan Geology, 44(4): 883-896. doi: 10.19826/j.cnki.1009-3850.2024.11008
Citation: WANG Dongbing, QIN Yadong, ZENG Jipei, LUO Liang, TANG Yuan, ZENG Xiaowen, HAN Mingming. 2024. Early Miocene uplift of the eastern Himalayan syntaxis: Constraints from U-Pb ages of zircon and rutile. Sedimentary Geology and Tethyan Geology, 44(4): 883-896. doi: 10.19826/j.cnki.1009-3850.2024.11008

Early Miocene uplift of the eastern Himalayan syntaxis: Constraints from U-Pb ages of zircon and rutile

  • Zircon and rutile U-Pb chronology of rocks from the eastern Himalayan syntaxis (EHS) were carried out to reveal the early uplift history of the EHS. The zircon U-Pb ages of two hornblendite samples are (34.0±0.2) Ma and (31.4±0.4) Ma, respectively. The rutile U-Pb ages are (23.8±0.9) Ma and (21.8±0.5) Ma, respectively. The rutile inclusions in the skarn garnet marble (with garnet as the host mineral) yield a U-Pb age of (19.5±0.7) Ma. Both zircon and rutile in the hornblendite are of magmatic origin, while the rutile inclusions are of metamorphic origin. We interpret the zircon age to represent the time of magma crystallization. While the ages of magmatic and metamorphic rutile represent the time of uplift and cooling after intrusion and crystallization. Comprehensive analyses show that the core of the EHS, surrounded by the Yarlung Tsangpo River, underwent significant uplift in the Early Miocene from 23 Ma to 19 Ma, and the uplift has accelerated since the Pliocene, from 5 Ma to 3 Ma. In addition, it is inferred that the EHS and the central Himalaya share a concurrent uplift history during the closure of Neotethys Ocean and the Early Miocene.

  • 加载中
  • [1] Burg J P,Davy P,Nievergelt P,et al.,1997. Exhumation during crustal folding in the Namche-Barwa syntaxis[J]. Terra Nova,9(2):53 − 56. doi: 10.1111/j.1365-3121.1997.tb00001.x

    CrossRef Google Scholar

    [2] Burg J P,Nievergelt P,Oberli F,et al.,1998. The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding[J]. Journal of Asian Earth Sciences,16(2):239 − 252.

    Google Scholar

    [3] 曹华文,李光明,张林奎,等,2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质,42(2):189 − 211.

    Google Scholar

    Cao H W,Li G M,Zhang L K,et al.,2022. Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization[J]. Sedimentary Geology and Tethyan Geology,42(2):189 − 211 (in Chinese with English abstract).

    Google Scholar

    [4] 董汉文,许志琴,曹汇,等,2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学,43(4):933 − 951.

    Google Scholar

    Dong H W,Xu Z Q,Cao H,et al.,2018. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis,and its tectonic evolution[J]. Earth Science,43(4):933 − 951 (in Chinese with English abstract).

    Google Scholar

    [5] 董汉文,许志琴,李源,等,2014a. 东喜马拉雅构造结墨脱地区晚三叠世深熔作用的锆石U-Pb年代限定[J]. 大地构造与成矿学,38(2):398 − 407.

    Google Scholar

    Dong H W,Xu Z Q,Li Y,et al.,2014a. Zircon LA-ICP-MS U-Pb dating of the Triassic anatexis at Mutuo,the eastern Himalayan syntaxis[J]. Geotectonica et Metallogenia,38(2):398 − 407 (in Chinese with English abstract).

    Google Scholar

    [6] 董汉文,许志琴,李源,等,2014b. 东喜马拉雅构造结墨脱剪切带特征及其区域构造意义[J]. 岩石学报,30(8):2229 − 2240.

    Google Scholar

    Dong H W,Xu Z Q,Li Y,et al.,2014b. Characteristics of the Médog shear zone in the Eastern Himalayan Syntaxis and its tectonic significance[J]. Acta Petrologica Sinica,30(8):2229 − 2240 (in Chinese with English abstract).

    Google Scholar

    [7] 董昕,张泽明,王金丽,等,2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学[J]. 岩石学报, 25(7):1678 − 1694.

    Google Scholar

    Dong X,Zhang Z M,Wang J L,et al.,2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane,Xizang Plateau:Petrology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 25(7):1678 − 1694 (in Chinese with English abstract).

    Google Scholar

    [8] Cherniak D J and Watson E B,2000. Pb diffusion in zircon[J]. Chemical Geology,172(1-2):5 − 24.

    Google Scholar

    [9] Chiaradia M,Schaltegger U,Spikings R,et al.,2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?—An invited paper[J]. Economic Geology,108(4):565 − 584. doi: 10.2113/econgeo.108.4.565

    CrossRef Google Scholar

    [10] Dewey J F and Burke K,1973. Xizang,Variscan and precambrian basement reactivation:Products of continental collision[J]. Journal of Geology,81(6):683 − 692. doi: 10.1086/627920

    CrossRef Google Scholar

    [11] Ding L,Kapp P,Cai F L,et al.,2022. Timing and mechanisms of Xizang Plateau uplift[J]. Nature Reviews Earth & Environment,3(10):652 − 667.

    Google Scholar

    [12] Ding L,Maksatbek S,Cai F L,et al.,2017. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences,60(4):635 − 651. doi: 10.1007/s11430-016-5244-x

    CrossRef Google Scholar

    [13] Ding L,Zhong D L,Yin A,et al.,2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters,92(3):423 − 438.

    Google Scholar

    [14] Dodson M H,1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,40(3):259 − 274. doi: 10.1007/BF00373790

    CrossRef Google Scholar

    [15] Dong H W and Xu Z Q,2016. Kinematics,fabrics and geochronology analysis in the Médog shear zone,eastern Himalayan syntaxis[J]. Tectonophysics,667:108 − 123. doi: 10.1016/j.tecto.2015.11.015

    CrossRef Google Scholar

    [16] 耿全如,潘桂棠,郑来林,等,2004. 藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境[J]. 地质科学,39(3):388 − 406.

    Google Scholar

    Geng Q R,Pan G T,Zheng L L,et al.,2004. Petrological characteristics and original setting of the Yarlung Tsangpo ophiolitic mélange in Namche Barwa,SE Xizang[J]. Chinese Journal of Geology,2004,39(3):388 − 406 (in Chinese with English abstract).

    Google Scholar

    [17] 耿全如,彭智敏,张璋,2010. 藏东雅鲁藏布江大拐弯蛇绿岩变基性岩类岩石地球化学再研究[J]. 地质通报, 29(12):1781 − 1794.

    Google Scholar

    Geng Q R,Peng Z M,Zhang Z,2010. Geochemical study on metamorphosed mafic rocks in ophiolitic zone in the Yarlung Zangpo Great Bend,eastern Xizang,China[J]. Geological Bulletin of China, 29(12):1781 − 1794 (in Chinese with English abstract).

    Google Scholar

    [18] Gong J F,Ji J Q,Zhou J,et al.,2015. Late miocene thermal evolution of the eastern himalayan syntaxis as constrained by biotite Ar40/Ar39 thermochronology[J]. Journal of Geology,123(4):369 − 384. doi: 10.1086/682951

    CrossRef Google Scholar

    [19] 龚俊峰,季建清,陈建军,等,2008. 东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究[J]. 岩石学报,24(10):2255 − 2272.

    Google Scholar

    Gong J F,Ji J Q,Chen H J,et al.,2008. 40Ar/39Ar geochronology studies of rocks in eastern Himalaya syntaxis[J]. Acta Petrologica Sinica,24(10):2255 − 2272 (in Chinese with English abstract).

    Google Scholar

    [20] Govin G,Beek P V D,Najman Y,et al.,2020. Early onset and late acceleration of rapid exhumation in the Namche Barwa syntaxis,eastern Himalaya[J]. Geology,48(12):1139 − 1143. doi: 10.1130/G47720.1

    CrossRef Google Scholar

    [21] Guo L,Zhang H F,Harris N,et al.,2012. Paleogene crustal anatexis and metamorphism in Lhasa terrane,eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex[J]. Gondwana Research,21(1):100 − 111. doi: 10.1016/j.gr.2011.03.002

    CrossRef Google Scholar

    [22] Guo L,Zhang H F,Harris N,et al.,2013. Late Cretaceous (~81 Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction[J]. Tectonophysics,608:112 − 126. doi: 10.1016/j.tecto.2013.10.007

    CrossRef Google Scholar

    [23] 郭亮,2012. 东喜马拉雅构造结西缘构造−岩浆事件及其地球动力学意义[D]. 武汉:中国地质大学(武汉).

    Google Scholar

    Guo L,2012. The tectono-magma events in the western margin of the eastern Himalayan syntaxis and their geodynamic implications[D]. Wuhan:China University of Geosciences(Wuhan) (in Chinese with English abstract).

    Google Scholar

    [24] Hames W E and Bowring S A,1994. An empirical evaluation of the argon diffusion geometry in muscovite[J]. Earth and Planetary Science Letters,124(1):161 − 169.

    Google Scholar

    [25] 郝光明,曾令森,赵令浩,2021. 西藏南部南迦巴瓦地区中新世−上新世地壳深熔作用[J]. 岩石学报,37(11):3501 − 3512. doi: 10.18654/1000-0569/2021.11.15

    CrossRef Google Scholar

    Hao G M,Zeng L S,Zhao L H,et al.,2021. Miocene-Pleistocene crustal anatexis in the Namche Barwa massif,southern Xizang[J]. Acta Petrologica Sinica,37(11):3501 − 3512 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.15

    CrossRef Google Scholar

    [26] Harrison T M,Célérier J,Aikman A B,et al.,2009. Diffusion of 40Ar in muscovite[J]. Geochimica et Cosmochimica Acta,73(4):1039 − 1051. doi: 10.1016/j.gca.2008.09.038

    CrossRef Google Scholar

    [27] Harrison T M,Duncan I,McDougall I,1985. Diffusion of 40Ar in biotite:Temperature,pressure and compositional effects[J]. Geochimica et Cosmochimica Acta,49(11):2461 − 2468. doi: 10.1016/0016-7037(85)90246-7

    CrossRef Google Scholar

    [28] Hu X M,Wang J G,An W,et al.,2017. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Science China Earth Sciences,60(4):603 − 625. doi: 10.1007/s11430-016-9003-6

    CrossRef Google Scholar

    [29] Hu Z C,Zhang W,Liu Y S,et al.,2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J]. Analytical Chemistry,87(2):1152 − 1157. doi: 10.1021/ac503749k

    CrossRef Google Scholar

    [30] 黄万波,计宏祥,1979. 西藏三趾马动物群的首次发现及其对高原隆起的意义[J]. 科学通报,24(19):885 − 888. doi: 10.1360/csb1979-24-19-885

    CrossRef Google Scholar

    Huang W B,Ji H X,1979. Discovery of Hipparion Fauna in Xizang[J]. Chinese Science Bulletin,24(19):885 − 888 (in Chinese with English abstract). doi: 10.1360/csb1979-24-19-885

    CrossRef Google Scholar

    [31] 康文君,徐锡伟,于贵华,等,2016. 南迦巴瓦峰第四纪隆升期次划分的热年代学证据[J]. 地球物理学报,59(5):1753 − 1761.

    Google Scholar

    Kang W J,Xu X W,Yu G H,et al.,2016. Thermochronological evidence for division of Quaternary uplifting stages of Mt. Namjagbarwa[J]. Chinese Journal of Geophysics,59(5):1753 − 1761 (in Chinese with English abstract).

    Google Scholar

    [32] Le Fort P,1975. Himalaya:The collided range:Present knowledge of the continental arc[J]. American Journal of Science,275(1):1 − 44. doi: 10.2475/ajs.275.1.1

    CrossRef Google Scholar

    [33] Lee J K,Williams I S,Ellis D J,1997. Pb,U and Th diffusion in natural zircon[J]. Nature,390(6656):159 − 162. doi: 10.1038/36554

    CrossRef Google Scholar

    [34] 雷永良,钟大赉,季建清,等,2008. 东喜马拉雅构造结更新世两期抬升−剥露事件的裂变径迹证据[J]. 第四纪研究,28(4):1753 − 1761.

    Google Scholar

    Lei Y L,Zhong D L,Ji J Q,et al.,2008. Fission track evidence for two pleistocene uplift-exhumation events in the eastern Himalayan syntaxis[J]. Quaternary Sciences,28(4):584 − 590 (in Chinese with English abstract).

    Google Scholar

    [35] 李国彪,万晓樵,2003. 藏南岗巴−定日地区始新世微体化石与特提斯消亡[J]. 地层学杂志,27(2):99 − 108.

    Google Scholar

    Li G B,Wan X Q,2003. Eocene microfossils in southern Xizang and the final closing of the Xizang-Tethys[J]. Journal of Stratigaphy,27(2):99 − 108 (in Chinese with English abstract).

    Google Scholar

    [36] Li Q L,Li S G,Zhou H Y,et al.,2002. Rutile U-Pb age for the ultrahigh pressure eclogite from the Dabie Mountains, central China: Evidence for rapid cooling[J]. Chinese Science Bulletin, 47(1):62 − 65.

    Google Scholar

    [37] 李祥辉,王成善,胡修棉,等,2000. 朋曲组——西藏南部最高海相层位一个新的地层单元[J]. 地层学杂志,24(3):243 − 248.

    Google Scholar

    Li X H,Wang C S,Hu X M,et al.,2000. The Pengqu Formation:A new Eocene stratigraphical unit in Tingri area,Xizang.[J]. Journal of Stratigaphy,24(3):243 − 248 (in Chinese with English abstract).

    Google Scholar

    [38] 李中尧,丁慧霞,袁玥,等,2021. 冈底斯岩浆弧东段沉积岩的晚白垩世变质作用及其构造意义[J]. 岩石学报, 37(11):3445 − 3463.

    Google Scholar

    Li Z Y,Ding H X,Yuan Y,et al.,2021. Late Cretaceous metamorphism of sedimentary rocks in the eastern Gangdese magmatic arc and its tectonic significance[J]. Acta Petrologica Sinica, 37(11):3445 − 3463 (in Chinese with English abstract).

    Google Scholar

    [39] Liu Y S,Gao S,Hu Z C,et al.,2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,51(1-2):537 − 571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [40] Liu Y S,Hu Z C,Gao S,et al.,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,257(1-2):34 − 43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [41] Ludwig K R,2003. ISOPLOT 3.00:A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center,4:25 − 34.

    Google Scholar

    [42] Mezger K,Hanson G N,Bohlen S R,1989. High-precision U-Pb ages of metamorphic rutile:application to the cooling history of high-grade terranes[J]. Earth & Planetary Science Letters,96(1-2):106 − 118.

    Google Scholar

    [43] 潘发斌,2014. 东喜马拉雅构造结东缘构造—岩浆事件及其地球动力学意义[D]. 武汉:中国地质大学(武汉).

    Google Scholar

    Pan F B,2014. The tectono-magma events in the eastern margin of the Himalayan syntaxis and their geodynamic implications[D]. Wuhan:China University of Geosciences(Wuhan) (in Chinese with English abstract).

    Google Scholar

    [44] 潘桂棠,王立全,张万平,等,2013. 青藏高原及邻区大地构造图及说明书(1∶1500000)[M]. 北京:地质出版社:1 − 159.

    Google Scholar

    Pan G T,Wang L Q,Zhang W P,et al.,2013. Tectonic map and instruction of Qinghai-Xizang Plateau and its adjacent areas (1∶1500000)[M]. Beijing:Geological Publishing House:1 − 159 (in Chinese).

    Google Scholar

    [45] Peng T,Gerdes A,Zeng L S,et al.,2021. Divergent metamorphism within the Namche Barwa Complex,the Eastern Himalaya,southeast Xizang,China - Insights from in-situ U-Th-Pb dating of metamorphic monazite[J]. Journal of Metamorphic Geology,40(3):307 − 328.

    Google Scholar

    [46] Seward D and Burg J P,2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data[J]. Tectonophysics,451(1-4):282 − 289. doi: 10.1016/j.tecto.2007.11.057

    CrossRef Google Scholar

    [47] 施雅风,刘东生,1964. 希夏邦马峰地区科学考察初步报告[J]. 科学通报, 15(10):928 − 938.

    Google Scholar

    Shi Y F,Liu D S,1964. Preliminary report on scientific expedition on Mount Shisha Pangma[J]. Chinese Science Bulletin, 15(10):928 − 938 (in Chinese with English abstract).

    Google Scholar

    [48] 孙志明,耿全如,楼雄英,2004. 东喜马拉雅构造结南迦巴瓦岩群的解体[J]. 沉积与特提斯地质,24(2):8 − 15.

    Google Scholar

    Sun Z M,Geng Q R,Lou X Y,2004. The subdivision of the Namjagbarwa Group Complex within the eastern Himalayan syntaxis,Xizang[J]. Sedimentary Geology and Tethyan Geology,24(2):8 − 15 (in Chinese with English abstract).

    Google Scholar

    [49] Tu J Y,Ji J Q,Sun D X,et al.,2015. Thermal structure,rock exhumation,and glacial erosion of the Namche Barwa Peak,constraints from thermochronological data[J]. Journal of Asian Earth Sciences,105:223 − 233. doi: 10.1016/j.jseaes.2015.03.035

    CrossRef Google Scholar

    [50] 涂继耀,季建清,钟大赉,等,2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据[J]. 地质力学学报,27(4):679 − 690.

    Google Scholar

    Tu J Y,Ji J Q,Zhong D L,et al.,2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene,constraints from thermochronological data[J]. Journal of Geomechanics,27(4):679 − 690 (in Chinese with English abstract).

    Google Scholar

    [51] Wang C S,Li X H,Hu X M,et al.,2002. Latest marine horizon north of Qomolangma (Mt Everest):implications for closure of Tethys seaway and collision tectonics[J]. Terra Nova,14(2):114 − 120. doi: 10.1046/j.1365-3121.2002.00399.x

    CrossRef Google Scholar

    [52] 王成善,戴紧根,刘志飞,等,2009. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,16(3):1 − 30.

    Google Scholar

    Wang C S,Dai J G,Liu Z F,et al.,2009. The uplift history of the Xizang Plateau and Himalaya and its study approaches and techniques:A review[J]. Earth Science Frontiers,2009,16(3):1 − 30 (in Chinese with English abstract).

    Google Scholar

    [53] 王金丽,张泽明,石超,2008. 拉萨地体东南缘的多期深熔作用及动力学[J]. 岩石学报,24(7):1539 − 1551.

    Google Scholar

    Wang J L,Zhang Z M,Shi C,2008. Anatexis and dynamics of the southeastern Lhasa terrane[J]. Acta Petrologica Sinica,24(7):1539 − 1551 (in Chinese with English abstract).

    Google Scholar

    [54] 王立全,潘桂棠,丁俊,等,2013. 青藏高原及邻区地质图及说明书(1∶1500000)[M]. 北京:地质出版社:1 − 247.

    Google Scholar

    Wang L Q,Pan G T,Ding J,et al.,2013. Geological map and instruction of Qinghai-Xizang Plateau and its adjacent areas (1∶1500000)[M]. Beijing:Geological Publishing House:1 − 247 (in Chinese).

    Google Scholar

    [55] 王天武,1993. 西藏墨脱县阿尼桥韧性变形变质带的岩石学及变质作用特征[J]. 西藏地质,(1):77 − 85.

    Google Scholar

    Wang T W,1993. The Petrology and metamorphism of the Aniqiao ductile deformation and metamorphic belt in Moto County,Xizang[J]. Xizang Geology,(1):77 − 85 (in Chinese with English abstract).

    Google Scholar

    [56] 徐仁,陶君客,孙湘君,1973. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 15(1):102 − 109.

    Google Scholar

    Xu R,Tao J K,Sun X J,1973. On the discovery of a quercus semicarpifolia bed in mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 15(1):102 − 109 (in Chinese with English abstract).

    Google Scholar

    [57] Xu Z Q,Ji S C,Cai Z H,et al.,2012. Kinematics and dynamics of the Namche Barwa Syntaxis,eastern Himalaya:Constraints from deformation,fabrics and geochronology[J]. Gondwana Research,21(1):19 − 36. doi: 10.1016/j.gr.2011.06.010

    CrossRef Google Scholar

    [58] 许志琴,蔡志慧,张泽明,等,2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学[J]. 岩石学报,24(7):1463 − 1476.

    Google Scholar

    Xu Z Q,Cai Z H,Zhang Z M,et al.,2008. Tectonics and fabric kinematics of the Namche Barwa terrane,Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica,24(7):1463 − 1476 (in Chinese with English abstract).

    Google Scholar

    [59] Yin A and Harrison T M,2000. Geologic evolution of the Himalayan-Xizang orogen[J]. Annual Review of Earth and Planetary Sciences,28(1):211 − 280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [60] Yu X J,Ji J Q,Gong J F,et al.,2011. Evidences of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon,the eastern Himalayan syntaxis[J]. Chinese Science Bulletin,56(10):756-764. doi: (in Chinese with English abstract).

    Google Scholar

    于祥江,季建清,龚俊峰,等,2011. 雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据[J]. 科学通报,56(10):756-764.

    Google Scholar

    [61] Zeng L S,Gao L E,Dong C Y,et al.,2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif,southern Xizang[J]. Gondwana Research,21(1):138 − 151. doi: 10.1016/j.gr.2011.07.023

    CrossRef Google Scholar

    [62] Zhang J J,Ji J Q,Zhong D L,et al.,2004. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China Series D:Earth Sciences,47(2):138 − 150. doi: 10.1360/02yd0042

    CrossRef Google Scholar

    [63] Zhang L,Wu J L,Tu J R,et al.,2020. RMJG Rutile:A new natural reference material for microbeam U‐Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research,44(1):133 − 145. doi: 10.1111/ggr.12304

    CrossRef Google Scholar

    [64] Zhang Z M,Dong X,Santosh M,et al.,2014. Metamorphism and tectonic evolution of the Lhasa terrane,Central Xizang[J]. Gondwana Research,25(1):170 − 189. doi: 10.1016/j.gr.2012.08.024

    CrossRef Google Scholar

    [65] Zhang Z M,Dong X,Xiang H,et al.,2015. Reworking of the Gangdese magmatic arc,southeastern Xizang:Post-collisional metamorphism and anatexis[J]. Journal of Metamorphic Geology,33(1):1 − 21. doi: 10.1111/jmg.12107

    CrossRef Google Scholar

    [66] 张泽明,丁慧霞,董昕,等,2018. 冈底斯弧的岩浆作用:从新特提斯俯冲到印度−亚洲碰撞[J]. 地学前缘,25(6):78 − 91.

    Google Scholar

    Zhang Z M,Ding H X,Dong X,et al.,2018. The Gangdese arc magmatism:from Neo-Tethyan subduction to Indo-Asian collision[J]. Earth Science Frontiers,25(6):78 − 91 (in Chinese with English abstract).

    Google Scholar

    [67] 张泽明,董昕,丁慧霞,等,2017. 喜马拉雅造山带的变质作用与部分熔融[J]. 岩石学报, 33(8):2313 − 2341.

    Google Scholar

    Zhang Z M,Dong X,Ding H X,et al.,2017. Metamorphism and partial melting of the Himalayan orogen[J]. Acta Petrologica Sinica, 33(8):2313 − 2341 (in Chinese with English abstract).

    Google Scholar

    [68] 郑来林,金振民,潘桂棠,等,2004. 东喜马拉雅南迦巴瓦地区区域地质特征及构造演化[J]. 地质学报,78(6):744 − 751.

    Google Scholar

    Zheng L L,Jin Z M,Pan G T,et al.,2004. Geological Features and tectonic evolution in the Namjagbarwa area,eastern Himalayas[J]. Acta Geologica Sinica,78(6):744 − 751 (in Chinese with English abstract).

    Google Scholar

    [69] 郑锡澜,常承法,1979. 雅鲁藏布江下游地区地质构造特征[J]. 地质科学,14(2):116 − 126.

    Google Scholar

    Zheng X L,Chang C F,1979. A preliminary note on the tectonic features of the Lower Yalu-Tsangpo River region[J]. Chinese Journal of Geology,14(2):116 − 126 (in Chinese with English abstract).

    Google Scholar

    [70] Zhu D C,Wang Q,Zhao Z D,2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record:Method and examples[J]. Science China Earth Sciences,60(6):1040 − 1056. doi: 10.1007/s11430-016-9041-x

    CrossRef Google Scholar

    [71] Zong K Q,Klemd R,Yuan Y,et al.,2017. The assembly of Rodinia:The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen,southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research,290:32 − 48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(295) PDF downloads(51) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint