2025 Vol. 45, No. 2
Article Contents

XU Zhengyao, HAN Qiang, JIA Xingliang, YANG Hongcai, BU Xuqiang. 2025. Genesis and major controlling factors for the enrichment of hydrogen sulfide accumulation in the condensate gas reservoir of the Shunbei No. 4 fault zone, Tarim Basin. Sedimentary Geology and Tethyan Geology, 45(2): 305-316. doi: 10.19826/j.cnki.1009-3850.2024.08001
Citation: XU Zhengyao, HAN Qiang, JIA Xingliang, YANG Hongcai, BU Xuqiang. 2025. Genesis and major controlling factors for the enrichment of hydrogen sulfide accumulation in the condensate gas reservoir of the Shunbei No. 4 fault zone, Tarim Basin. Sedimentary Geology and Tethyan Geology, 45(2): 305-316. doi: 10.19826/j.cnki.1009-3850.2024.08001

Genesis and major controlling factors for the enrichment of hydrogen sulfide accumulation in the condensate gas reservoir of the Shunbei No. 4 fault zone, Tarim Basin

More Information
  • This study investigates the origin and enrichment process of hydrogen sulfide in the condensate gas reservoirs of the Shunbei No. 4 fault zone in the Tarim Basin. Gas samples from Ordovician gas reservoirs at different depths in Well Shunbei No. 4 were analyzed by chromatographic method to determine hydrogen sulfide and carbon dioxide concentrations. The geological origins of hydrogen sulfide were studied, and its controlling factors of enrichment were discussed. The results show that: (1) The fractured-cavity type condensate gas reservoirs from the Ordovician carbonates generally contain hydrogen sulfide, with concentrations ranging from 0.3% to 1.6%, which meets the standard of estimating hydrogen sulfide gas reserves and has good comprehensive utilization value. Moreover, the hydrogen sulfide concentrations positively correlate with the carbon dioxide concentrations, decreasing from south to north, indicating a low-sulfur hydrogen gas reservoir. (2) Hydrogen sulfide and carbon dioxide of the carbonate fracture-type in condensate gas reservoirs of the Shunbei No. 4 fault zone are products of thermochemical sulfate reduction (TSR). The deep, widely distributed Middle Cambrian salt rock provides the material basis for hydrogen sulfide generation, while hydrocarbon reservoirs formed in Cambrian subsalt strata provide hydrocarbons for the TSR process. The long-term increase in temperature due to the deep burial of Cambrian subsalt oil and gas reservoirs has created favorable conditions for the TSR process. (3) Strike-slip faults function as migration pathways for deep hydrogen sulfide into the Ordovician reservoirs. The thick Upper Ordovician mudstone provides excellent preservation conditions for the enrichment of hydrogen sulfide gas reservoirs. Consequently, geological factors such as Cambrian salt-rock, strik-slip fault connections, Upper Ordovician tight sealing and late-stage deep burial with high temperature have contributed to the enrichment of hydrogen sulfide in the Ordovician condensate gas reservoirs in eastern Shunbei, indicating the potential existence of high hydrogen sulfide gas reservoirs in deep Cambrian reservoirs of the Shunbei area.

  • 加载中
  • [1] 蔡勋育,刘金连,赵培荣,等,2020. 中国石化油气勘探进展与上游业务发展战略[J]. 中国石油勘探,25(1):11 − 19.

    Google Scholar

    Cai X Y,Liu J L,Zhao P R,et al.,2020. Exploration progress and upstream development strategy of Sinopec[J]. China Petroleum Exploration,25(1):11 − 19 (in Chinese with English abstract).

    Google Scholar

    [2] 曹自成,路清华,顾忆,等,2020. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质,41(5):975 − 984.

    Google Scholar

    Cao Z C,Lu Q H,Gu Y,et al.,2020. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones,Tarim Basin[J]. Oil & Gas Geology,41(5):975 − 984 (in Chinese with English abstract).

    Google Scholar

    [3] 陈安定,李剑锋,代金友,2009. 论硫化氢生成的地质条件[J]. 海相油气地质,14(4):24 − 34.

    Google Scholar

    Chen A D,Li J F,Dai J Y,2009. Geological conditions of generating hydrogen sulphide[J]. Marine Origin Petroleum Geology,14(4):24 − 34 (in Chinese with English abstract).

    Google Scholar

    [4] 陈红汉,2007. 油气成藏年代学研究进展[J]. 石油与天然气地质,28(2):143 − 150.

    Google Scholar

    Chen H H,2007. Advances in geochronoiogy of hydrocarbon accumulation[J]. Oil & Gas Geology,28(2):143 − 150 (in Chinese with English abstract).

    Google Scholar

    [5] 程汉列,王连山,高创波,等,2018. 塔中奥陶系储层硫化氢成因及主控因素[J]. 地质找矿论丛,33(4):604 − 610.

    Google Scholar

    Cheng H L,Wang L S,Gao C B,et al.,2018. Origin of hydrogen sulfide and the main control factor of its distribution in Ordovician carbonate reservoirs of Tazhong area[J]. Contributions to Geology and Mineral Resources Research,33(4):604 − 610 (in Chinese with English abstract).

    Google Scholar

    [6] 戴金星,1985. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报,3(4):109 − 120.

    Google Scholar

    Dai J X,1985. Distribution,classification and origin of natural gas with hydrogen sulfide in China[J]. Acta Sedimentologica Sinica,3(4):109 − 120 (in Chinese with English abstract).

    Google Scholar

    [7] 邓尚,李慧莉,张仲培,等,2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质,39(5):878 − 888.

    Google Scholar

    Deng S,Li H L,Zhang Z P,et al.,2018. Characteristics of differential actives in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings,Tarim Basin[J]. Oil & Gas Geology,39(5):878 − 888 (in Chinese with English abstract).

    Google Scholar

    [8] Deng S,Li H L,Zhang Z P,et al.,2019. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin,103(1):109 − 137. doi: 10.1306/06071817354

    CrossRef Google Scholar

    [9] 樊建明,郭平,孙良田,等,2006. 天然气储层中硫化氢分布规律、成因及对生产的影响[J]. 特种油气藏,13(2):90 − 94.

    Google Scholar

    Fan J M,Guo P,Sun L T,et al.,2006. Hydrogen sulfide distribution,genesis and impact on production in gas reservoir[J]. Special Oil and Gas Reservoirs,13(2):90 − 94 (in Chinese with English abstract).

    Google Scholar

    [10] 谷茸,云露,朱秀香,等,2020. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质,42(2):248 − 254.

    Google Scholar

    Gu R,Yun L,Zhu X X,et al.,2020. Oil and gas sources in Shunbei Oilfield,Tarim Basin[J]. Petroleum Geology & Experiment,42(2):248 − 254 (in Chinese with English abstract).

    Google Scholar

    [11] 顾忆,万旸璐,黄继文,等,2019. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质,41(2):157 − 164.

    Google Scholar

    Gu Y,Wan Y L,Huang J W,et al.,2019. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment,41(2):157 − 164 (in Chinese with English abstract).

    Google Scholar

    [12] 关晓东,郭磊,2003. 深层−超深层油气成藏研究新进展及展望[J]. 石油实验地质,45(2):203 − 209.

    Google Scholar

    Guan X D,Guo L,2003. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment,45(2):203 − 209 (in Chinese with English abstract).

    Google Scholar

    [13] 郭鸣,刘兴华,陈光智,2016. 塔里木油田含硫试采油井的原油密闭转运技术的应用[J]. 钻采工艺,39(5):62 − 64,104.

    Google Scholar

    Guo M,Liu X H,Chen G Z,2016. Crude oil closed transport unit test wells in Tarim oilfield[J]. Drilling & Production Technology,39(5):62 − 64 (in Chinese with English abstract).

    Google Scholar

    [14] 韩俊,况安鹏,能源,等,2021. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质,42(2):152 − 160.

    Google Scholar

    Han J,Kuang A P,Neng Y,et al.,2021. Vertical layered structure of Shunbei No. 5 Strike-Slip Fault Zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology,42(2):152 − 160 (in Chinese with English abstract).

    Google Scholar

    [15] 何大祥,李博偲,胡锦杰,等,2022. 哈拉哈塘凹陷含硫化氢天然气地球化学特征[J]. 中国石油大学学报:自然科学版,46(1):44 − 52.

    Google Scholar

    He D X,Li B C,Hu J J,et al.,2022. Geochemical characteristics of H2S-bearing natural gas from Halahatang sag[J]. Journal of China University of Petroleum (Edition of Natural Science),46(1):44 − 52 (in Chinese with English abstract).

    Google Scholar

    [16] 何治亮,张军涛,丁茜,等,2017. 深层−超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质,38(4):633 − 644,763.

    Google Scholar

    He Z L,Zhang J T,Ding Q,et al.,2017. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,38(4):633 − 644,763 (in Chinese with English abstract).

    Google Scholar

    [17] 侯路,胡军,汤军,2005. 中国碳酸盐岩大气田硫化氢分布特征及成因[J]. 石油学报,26(3):26 − 32.

    Google Scholar

    Hou L,Hu J,Tang J,2005. Distribution and genesis of hydrogen sulfide in giant carbonate gas fields of China[J]. Acta Petrolei Sinica,26(3):26 − 32 (in Chinese with English abstract).

    Google Scholar

    [18] 黄诚,2019. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J]. 石油实验地质,41(3):601 − 612.

    Google Scholar

    Huang C,2019. Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method:A case study of Shunbei area,Tarim Basin[J]. Petroleum Geology & Experiment,41(3):601 − 612 (in Chinese with English abstract).

    Google Scholar

    [19] 姜福杰,杨海军,沈卫兵,等,2015. 中地区奥陶系碳酸盐岩油气输导格架及其控藏模式[J]. 石油学报,36(S2):51 − 59.

    Google Scholar

    Jiang F J,Yang H J,Shen W B,et al.,2015. Ordovician carbonate hydrocarbon transport system in Tazhong area of Tarim basin and its reservoir-controlling mode[J]. Acta Petrolei Sinica,36(S2):51 − 59 (in Chinese with English abstract).

    Google Scholar

    [20] 江兴福,徐人芬,黄建章,2002. 川东地区飞仙关组气藏硫化氢分布特征[J]. 天然气工业,22(2):24 − 27.

    Google Scholar

    Jiang X F,Xu R F,Haung J Z,2002. Characteristics of hydrogen sulfide distribution in Feixianguan formation gas reservoirs in east Sichuan[J]. Natural Gas Industry,22(2):24 − 27 (in Chinese with English abstract).

    Google Scholar

    [21] 焦方正,2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,39(2):207 − 216.

    Google Scholar

    Jiao F Z,2018. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology,39(2):207 − 216 (in Chinese with English abstract).

    Google Scholar

    [22] 李阳,薛兆杰,程喆,等,2020. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,25(1):45 − 57.

    Google Scholar

    Li Y,Xue Z J,Cheng Z,et al.,2020. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration,25(1):45 − 57 (in Chinese with English abstract).

    Google Scholar

    [23] 李映涛,漆立新,张哨楠,等,2019. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,40(12):1470 − 1484.

    Google Scholar

    Li Y T,Qi L X,Zhang S N,et al.,2019. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area,Tarim Basin[J]. Acta Petrolei Sinica,40(12):1470 − 1484 (in Chinese with English abstract).

    Google Scholar

    [24] 刘宝增,2020. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探,25(3):83 − 95.

    Google Scholar

    Liu B Z,2020. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin - taking Shunbei No. 1 and No. 5 strike slip fault zones as examples[J]. China Petroleum Exploration,25(3):83 − 95 (in Chinese with English abstract).

    Google Scholar

    [25] 毛毳,钟建华,王有智,等,2018. 塔里木盆地巴楚隆起奥陶系岩溶缝洞化学充填物成因分析[J]. 中国石油大学学报:自然科学版,42(6):50 − 58.

    Google Scholar

    Mao C,Zhong J H,Wang Y Z,et al.,2018. Origin of chemical fillings in Ordovician fracture cave of Bachu Uplift in Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),42(6):50 − 58 (in Chinese with English abstract).

    Google Scholar

    [26] 倪新锋,黄理力,陈永权,等,2017. 塔中地区深层寒武系盐下白云岩储层特征及主控因素[J]. 石油与天然气地质,38(3):489 − 498.

    Google Scholar

    Ni X F,Huang L L,Chen Y Q,et al.,2017. Characteristics and main controlling factors of the Cambrian pre-salt dolomite reservoirs in Tazhong Block,Tarim Basin[J]. Oil & Gas Geology,38(3):489 − 498 (in Chinese with English abstract).

    Google Scholar

    [27] Pang X Q,Jia C Z,Zhang K,et al.,2020. The dead line for oil and gas and implication for fossil resource prediction[J]. Earth System Science Data,12(1):577 − 590. doi: 10.5194/essd-12-577-2020

    CrossRef Google Scholar

    [28] Pang X Q,Wang W Y,Wang Y X,et al.,2015. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica,36(10):1167 − 1187.

    Google Scholar

    [29] 秦胜飞,贾承造,李梅,2002. 和田河气田天然气东西部差异及成因[J]. 石油勘探与开发,29(5):16 − 18.

    Google Scholar

    Qin S F,Jia C Z,Li M,2002. The difference in geochemical characteristics of natural gases between eastern and western parts in Hotan River gas field of Tarim Basin and its origin[J]. Petroleum Exploration and Development,29(5):16 − 18 (in Chinese with English abstract).

    Google Scholar

    [30] 孙杰,张世奇,魏垂高,等,2006. 罗家油田硫化氢成因及运聚规律研究[J]. 西部探矿工程,18(7):81 − 84.

    Google Scholar

    Sun J,Zhang S Q,Wei C G,et al.,2006. Study on the law of transport and gathering of hydrogen sulfide in Luojia Oilfield[J]. West-China Exploration Engineering,18(7):81 − 84 (in Chinese with English abstract).

    Google Scholar

    [31] 汤良杰,金之钧,庞雄奇,2000. 多期叠合盆地油气运聚模式[J]. 石油大学学报,26(3):263 − 270.

    Google Scholar

    Tang L J,Jin Z J,Pang X Q,2000. Hydrocarbon migration and accumulation models of superimposed basins[J]. Journal of China University of Petroleum (Edition of Natural Science),26(3):263 − 270 (in Chinese with English abstract).

    Google Scholar

    [32] 王昱翔,顾忆,傅强,等,2019. 顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因[J]. 吉林大学学报:地球科学版,49(4):932 − 946.

    Google Scholar

    Wang Y X,Gu Y,Fu Q,et al.,2019. Characteristics and genesis of deep carbonate reservoirs in Shunbei area[J]. Journal of Jilin University (Earth Science Edition),49(4):932 − 946 (in Chinese with English abstract).

    Google Scholar

    [33] 王招明,谢会文,陈永权,等,2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探,19(2):1 − 13.

    Google Scholar

    Wang Z M,Xie H W,Chen Y Q,et al.,2014. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration,19(2):1 − 13 (in Chinese with English abstract).

    Google Scholar

    [34] 徐蝶,古家青,贺维胜,等,2019. 塔中奥陶系硫化氢成因及寒武系油气探勘潜力[J]. 新疆地质,37(4):525 − 531.

    Google Scholar

    Xu D,Gu J Q,He W S,et al.,2019. Origin of hydrogen sulfide in Ordovician in Tazhong area and exploration potential of Cambrian oil and gas[J]. Xinjiang Geology,37(4):525 − 531 (in Chinese with English abstract).

    Google Scholar

    [35] 云露,2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探,26(3):41 − 52.

    Google Scholar

    Yun L,2021. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance,Tarim Basin[J]. China Petroleum Exploration,26(3):41 − 52 (in Chinese with English abstract).

    Google Scholar

    [36] 张水昌,高志勇,李建军,等,2012. 塔里木盆地寒武系−奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发,39(3):285 − 294. doi: 10.1016/S1876-3804(12)60044-5

    CrossRef Google Scholar

    Zhang S C,Gao Z Y,Li J J,et al.,2012. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration and Development,2012,39(3):285 − 294 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60044-5

    CrossRef Google Scholar

    [37] 张水昌,朱光有,陈建平,等,2007. 四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨[J]. 科学通报,52(S1):86 − 94.

    Google Scholar

    Zhang S C,Zhu G Y,Chen J P,et al.,2007. Discussion on gas sources of large gas fields with high hydrogen sulfide content in Feixianguan Formation,Northeastern Sichuan Basin[J]. Chinese Science Bulletin,52(Sup 1):86 − 94 (in Chinese with English abstract).

    Google Scholar

    [38] 赵孟军,2002. 塔里木盆地和田河气田天然气的特殊来源及非烃组分的成因[J]. 地质论评,48(5):480 − 486.

    Google Scholar

    Zhao M J,2002. Special sources of the natural gases of the Hotan River gas field and the origin of its non-hydrocarbon gases[J]. Geological Review,48(5):480 − 486 (in Chinese with English abstract).

    Google Scholar

    [39] 赵兴齐,陈践发,张晨,等,2011. 天然气藏中硫化氢成因研究进展[J]. 新疆石油地质,32(5):552 − 556.

    Google Scholar

    Zhao X Q,Chen J F,Zhang C,et al.,2011. The research progress of hydrogen sulfide genesis in gas reservoir[J]. Xingjiang Petroleum Geology,32(5):552 − 556 (in Chinese with English abstract).

    Google Scholar

    [40] 朱光有,戴金星,张水昌,等,2004. 中国含硫化氢天然气的研究及勘探前景[J]. 天然气工业,24(9):1 − 5.

    Google Scholar

    Zhu G Y,Dai J X,Zhang S C,et al.,2004. Research on sour gas in China and its exploration prospects[J]. Natural Gas Industry,24(9):1 − 5 (in Chinese with English abstract).

    Google Scholar

    [41] 朱光有,费安国,赵杰,等,2014. TSR成因H2S的硫同位素分馏特征与机制[J]. 岩石学报,30(1):3772 − 3786.

    Google Scholar

    Zhu G Y,Fei A G,Zhao J,et al.,2014. Sulfur isotopic fractionation and mechanism for Thermochemical Sulfate Reduction genetic H2S[J]. Acta Petrologica Sinica,30(1):3772 − 3786 (in Chinese with English abstract).

    Google Scholar

    [42] 朱光有,杨海军,苏劲,等,2012. 塔里木盆地海相石油的真实勘探潜力[J]. 岩石学报,28(4):1333 − 1347.

    Google Scholar

    Zhu G Y,Yang H J,Su J S,et al.,2012. True exploration potential of marine oils in the Tarim Basin[J]. Acta Petrologica Sinica,28(4):1333 − 1347 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(189) PDF downloads(38) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint