2024 Vol. 44, No. 4
Article Contents

DU Wujia, GAO Ping, CAI Yidong, LIU Ruobing, CAO Gangshan. 2024. Paleoclimate evolution and origin of organic carbon isotope variations during the Ordovician–Silurian transition in the Upper Yangtze area. Sedimentary Geology and Tethyan Geology, 44(4): 809-825. doi: 10.19826/j.cnki.1009-3850.2024.06001
Citation: DU Wujia, GAO Ping, CAI Yidong, LIU Ruobing, CAO Gangshan. 2024. Paleoclimate evolution and origin of organic carbon isotope variations during the Ordovician–Silurian transition in the Upper Yangtze area. Sedimentary Geology and Tethyan Geology, 44(4): 809-825. doi: 10.19826/j.cnki.1009-3850.2024.06001

Paleoclimate evolution and origin of organic carbon isotope variations during the Ordovician–Silurian transition in the Upper Yangtze area

More Information
  • The Ordovician–Silurian transition is an important period in Earth’s history, marked by drastic changes in paleoclimate and the well-known Hirnantian isotope carbon excursion (HICE) in the Late Ordovician. However, the causes of paleoclimate changes and carbon isotope excursions, as well as their correlations, are still unclear. Based on the analysis of the total organic carbon (TOC) contents, organic carbon isotopes (δ13Corg), as well as major and trace elements, the chemical index of alteration (CIA) values of the Wufeng-Longmaxi Formation black shales of Well JY4 in Jiaoshiba area in the upper Yangtze region were calculated. Combined with biostratigraphy, it is found that the paleoclimate conditions of WF2–WF4 members gradually changed from warm and humid to cold and arid. The paleoclimate of LM1–LM4 members remained cold and arid, with an increasing trend upward in chemical weathering. The LM5 Member marked a gradual transition back to warm and humid climate environment, while the paleocimate conditions of LM6–LM7 and their above members showed an episodic fluctuation to cold and arid. The elemental geochemical proxies indicate that the sedimentary environment of the WF2–WF4 members shifted from oxic to anoxic conditions, with a rapid increase in oxygen content in Guanyinqiao Formation. The shales of LM1–LM3 members were deposited in an extremely anoxic and sulfidic environment, with oxygen content gradually increasing upward in the LM4 Member, transitioning from anoxic to suboxic, hypoxic, and finally oxidized conditions. The "positive drift" of δ13Corg in Guanyinqiao Formation is likely related to the burial and oxidation of organic carbon, with enhanced nutrient input from chemical weathering also playing a role. The subsequent "negative drift" in the black shale of Longmaxi Formation may be associated with the return of 12C to the marine carbon pool due to large-scale transgression.

  • 加载中
  • [1] Ahm A S C,Bjerrum C J,Hammarlund E U,2017. Disentangling the record of diagenesis,local redox conditions,and global seawater chemistry during the latest Ordovician glaciation[J]. Earth and Planetary Science Letters,459:145 − 156. doi: 10.1016/j.jpgl.2016.09.049

    CrossRef Google Scholar

    [2] Barash,2014. Environmental conditions of the mass extinction of marine biota at the end of the Ordovician[J]. Doklady Earth Sciences,456(2):667 − 669. doi: 10.1134/S1028334X14060312

    CrossRef Google Scholar

    [3] Belcher K,2008. Species abundance changes during mass extinction and the inverse Signor–Lipps effect:Apparently abrupt graptolite mass extinctions as an artifact of sampling[D]. Buffalo:State University of New York at Buffalo:1 − 90.

    Google Scholar

    [4] Bergström S M,Saltzman M R,Schmitz B,2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications[J]. Geological Magazine,143(5):657 − 678. doi: 10.1017/S0016756806002469

    CrossRef Google Scholar

    [5] Brenchley P J,Carden G A,Hints L,et al.,2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences:Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation[J]. Geological Society of America Bulletin,115(1):89 − 104. doi: 10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2

    CrossRef Google Scholar

    [6] Brenchley P J,Marshall J D,Carden G A F,et al.,1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology,22(4):295 − 298. doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2

    CrossRef Google Scholar

    [7] Buffett B A,Zatsepina O Y,1999. Metastability of gas hydrate[J]. Geophysical Research Letters,26(19):2981 − 2984. doi: 10.1029/1999GL002339

    CrossRef Google Scholar

    [8] Buggisch W,Joachimski M M,Lehnert O,et al.,2010. Did intense volcanism trigger the first Late Ordovician icehouse?[J]. Geology,38(4):327 − 330. doi: 10.1130/G30577.1

    CrossRef Google Scholar

    [9] 陈超,2018. 川南−黔北地区晚奥陶世—早志留世地史转折期古海洋、古气候演变及烃源岩成因机制研究[D]. 武汉:中国地质大学:112 − 115.

    Google Scholar

    Chen C,2018. Research on paleoceanopraphy,paleoclimate and formation mechanism of source rock during geologic transition period from Late Ordovician to Early Silurian in southern Sichuan Province-northern Guizhou Province,South China[D]. Wuhan:China University of Geoscience:112 − 115 (in Chinese with English abstract).

    Google Scholar

    [10] 陈旭,樊隽轩,陈清,等,2014. 论广西运动的阶段性[J]. 中国科学:地球科学,44(5):842 − 850.

    Google Scholar

    Chen X,Fan J X,Chen Q,et al., 2014. Toward a stepwise Kwangsian Orogeny[J]. Science China:Earth Sciences,57:379 − 387 (in Chinese with English abstract).

    Google Scholar

    [11] Chen X,Melchin M J,Sheets H D,et al.,2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China[J]. Journal Information,79(5):842 − 861.

    Google Scholar

    [12] Chen X,Rong J Y,Li Y,et al.,2004. Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,204(3):353 − 372.

    Google Scholar

    [13] 成俊峰,董少峰,陈中阳,2020. 塔里木盆地顺北地区中—晚奥陶世稳定碳同位素特征及意义[J]. 地层学杂志,44(4):366 − 372.

    Google Scholar

    Cheng J F,Dong S F,Chen Z Y,2020. Characteristics and correlation of the stable carbon isotope records in the Middle to Late Ordovician carbonates in the Shunbei Area,Tarim Basin,NW China[J]. Journal of Stratigraphy,44(4):366 − 372 (in Chinese with English abstract).

    Google Scholar

    [14] Dahl T W,Canfield D E,Rosing M T,et al.,2011. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans[J]. Earth and Planetary Science Letters,311(3-4):264 − 274. doi: 10.1016/j.jpgl.2011.09.016

    CrossRef Google Scholar

    [15] 董振国,赵伟,郭军军,等,2020. 胜利煤田胜利组褐煤地球化学特征及古环境地质意义[J]. 煤炭科学技术,48(11):172 − 181.

    Google Scholar

    Dong Z G,Zhao W,Guo J J,et al.,2020. Geochemical characteristics of lignite from Shengli Formation and Paleo-environmental geological significance in Shengli Coalfield[J]. Coal Science and Technology,48(11):172 − 181 (in Chinese with English abstract).

    Google Scholar

    [16] Elrick M,Reardon D,Labor W,et al.,2013. Orbital-scale climate change and glacioeustasy during the early Late Ordovician (pre-Hirnantian) determined from δ18O values in marine apatite[J]. Geology,41(7):775 − 778. doi: 10.1130/G34363.1

    CrossRef Google Scholar

    [17] Fan J X,Peng P A,Melchin M J,2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary,Yichang,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,276:160 − 169.

    Google Scholar

    [18] Finnegan S,Bergmann K,Eiler J M,et al.,2011. The magnitude and duration of Late Ordovician-Early Silurian Glaciation[J]. Science,331(6019):903 − 906. doi: 10.1126/science.1200803

    CrossRef Google Scholar

    [19] Fedo C M,Young G M,Nesbitt G M,1997. Paleoclimatic control on the composition of the paleoproterozoic serpent formation,huronian supergroup,Canada:A greenhouse to icehouse transition[J]. Precambrian Research,86:201 − 223. doi: 10.1016/S0301-9268(97)00049-1

    CrossRef Google Scholar

    [20] 冯增昭,彭勇民,金振奎,等,2001. 中国南方中及晚奥陶世岩相古地理[J]. 古地理学报,3(4):10 − 24.

    Google Scholar

    Feng Z Z,Peng Y M,Jin Z K,et al.,2001. Lithofacies palaeogeography of the Middle and Late Ordovician in South China[J]. Journal of Palaeogeography(Chinese Edition),3(4):10 − 24 (in Chinese with English abstract).

    Google Scholar

    [21] Gao P,He Z L,Lash Gary G,et al.,2021. Controls on silica enrichment of lower cambrian organic-rich shale deposits[J]. Marine and Petroleum Geology,130:105126. doi: 10.1016/j.marpetgeo.2021.105126

    CrossRef Google Scholar

    [22] Gao P,Xiao X M,Hu D F,et al.,2024. Comparison of silica diagenesis between the Lower Cambrian and Lower Silurian shale reservoirs in the middle-upper Yangtze Platform (South China)[J]. AAPG Bulletin,108:971 − 1003. doi: 10.1306/01242422096

    CrossRef Google Scholar

    [23] Ge X Y,Mou C L,Yu Q,et al. 2019. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian),South China,with implications for paleoweathering,provenance,tectonic setting and paleoclimate[J]. Marine and Petroleum Geology,103:646 − 660.

    Google Scholar

    [24] 葛祥英,牟传龙,余谦,等,2021. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,41(3):418 − 435.

    Google Scholar

    Ge X Y,Mou C L,Yu Q,et al.,2021. Study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology,41(3):418 − 435 (in Chinese with English abstract).

    Google Scholar

    [25] Gibbs M T,Barron E J,Kump L R,1997. An atmospheric pCO2 threshold for glaciation in the Late Ordovician[J]. Geology,25(5):447 − 450. doi: 10.1130/0091-7613(1997)025<0447:AAPCTF>2.3.CO;2

    CrossRef Google Scholar

    [26] Gorjan P,Kaiho K,Fike D A,et al., 2012. Carbon-and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section,South China:Global correlation and environmental event interpretation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,337–338:14 − 22.

    Google Scholar

    [27] Gradstein F M,Ogg J G,Smith A G,2004. A Geologic Time Scale 2004[M]. Cambridge:Cambridge University Press.

    Google Scholar

    [28] Hammarlund E U,Loydell D K,Nielsen A T,et al.,2019. Early Silurian δ13Corg excursions in the foreland basin of Baltica,both familiar and surprising[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,526:126 − 135.

    Google Scholar

    [29] Harper D A T,Rong J Y,1995. Patterns of change in the brachiopod faunas through the Ordovician-Silurian interface[J]. Modern Geology,20(1):83 − 100.

    Google Scholar

    [30] 何龙,王云鹏,陈多福,2019. 川南地区晚奥陶—早志留世沉积环境与古气候的地球化学特征[J]. 地球化学,48(6):555 − 566.

    Google Scholar

    He L,Wang Y P,Chen D F,2019. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin[J]. Geochimica,48(6):555 − 566 (in Chinese with English abstract).

    Google Scholar

    [31] 何龙,王云鹏,陈多福,2021. 四川盆地晚奥陶世有机碳、氮同位素异常及其古环境意义[J]. 地球化学,50(6):623 − 634.

    Google Scholar

    He L,Wang Y P,Chen D F,2021. Organic carbon and nitrogen isotope anomalies during the late Ordovician in Sichuan Basin,and their implications for the palaeoenvironment[J]. Geochimica,50(6):623 − 634 (in Chinese with English abstract).

    Google Scholar

    [32] Herrmann A D,Patzkowsky M E,Pollard D,2003. Obliquity forcing with 8-12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation[J]. Geology,31(6):485 − 488. doi: 10.1130/0091-7613(2003)031<0485:OFWTPL>2.0.CO;2

    CrossRef Google Scholar

    [33] 黄福喜,陈洪德,侯明才,等,2011. 中上扬子克拉通加里东期 (寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,27(8):2299 − 2317.

    Google Scholar

    Huang F X,Chen H D,Hou M C,et al.,2011. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica,27(8):2299 − 2317 (in Chinese with English abstract).

    Google Scholar

    [34] Jiang G Q,Kaufman A J,Christie-Blick N,et al.,2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters,261:303 − 320. doi: 10.1016/j.jpgl.2007.07.009

    CrossRef Google Scholar

    [35] Jin C S,Liao Z W,Lash G G,2021. High-frequency redox variation across the Ordovician–Silurian transition,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,566:110218.

    Google Scholar

    [36] Kennedy M J,Wagner T. 2011. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean[J]. Proceedings of the National Academy of Sciences,108(24):9776 − 9781.

    Google Scholar

    [37] Kendall B,Komiya T,Lyons T W,et al.,2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period[J]. Geochimica et Cosmochimica Acta,156:173 − 193. doi: 10.1016/j.gca.2015.02.025

    CrossRef Google Scholar

    [38] Kump L R,Arthur M A,Patzkowsky M E,et al.,1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2(1):173 − 187.

    Google Scholar

    [39] Laporte D F,Holmden C,Patterson W P,et al.,2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography,Palaeoclimataology,Palaeoecology,276(1):182 − 195.

    Google Scholar

    [40] Le Heron D P,Craig J,Etienne J L. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East[J]. Earth-Science Reviews,2009,93:47 − 76.

    Google Scholar

    [41] Lenton T M,Crouch M,Johnson M,et al.,2012. First plants cooled the Ordovician[J]. Nature Geoscience,5(2):86 − 89. doi: 10.1038/ngeo1390

    CrossRef Google Scholar

    [42] 李超,2019. 华南上扬子台地中奥陶统—兰多维列统碳同位素地层学[D]. 合肥:中国科学技术大学:48 − 53.

    Google Scholar

    Li C,2019. Middle Ordovician-Llandovery carbon isotope chemostratigraphy in Upper Yangtze Platform,South China[D]. Hefei:University of Science and Technology of China:48 − 53 (in Chinese with English abstract).

    Google Scholar

    [43] 李超,武学进,樊隽轩,等,2019. 贵州习科 1 井奥陶—志留系之交的碳同位素化学地层学[J]. 地球化学,48(6):533 − 543.

    Google Scholar

    Li C,Wu X J,Fan J X,et al.,2019. Carbon isotope chemostratigraphy of the Ordovician-Silurian transition interval of the Xike-1 drillcore in Guizhou,China[J]. Geochimica,48(6):533 − 543 (in Chinese with English abstract).

    Google Scholar

    [44] 李刚,赵迪斐,郭英海,2018. 川东南地区龙马溪组页岩笔石与沉积环境的关系[J]. 科学技术与工程,18(12):16 − 23.

    Google Scholar

    Li G,Zhao D F,Guo Y H,2018. The relationship between graptolite of Longmaxi shale and sedimentary environment in southeastern Sichuan[J]. Science Technology and Engineering,18(12):16 − 23 (in Chinese with English abstract).

    Google Scholar

    [45] Li Y F,Zhang T W,Shen B J,et al.,2021. Carbon and sulfur isotope variations through the Upper Ordovician and Lower Silurian of South China linked to volcanism[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,567:110285.

    Google Scholar

    [46] 刘宝珺,周名魁,王汝植,1990. 中国南方早古生代古地理轮廓及构造演化[J]. 地球学报,11(1):97 − 98.

    Google Scholar

    Liu B J,Zhou M K,Wang R Z,1990. Early Palaeozoic palaeogeography and tectonic evolution of South China[J]. Acta Geoscientica Sinica,11(1):97 − 98 (in Chinese with English abstract).

    Google Scholar

    [47] 刘本培,全秋琦,1996. 地史学教程[M]. 3版. 北京:地质出版社:116 − 121.

    Google Scholar

    Liu B P,Quan Q Q. 1996. Historical Geology[M]. 3th ed. Beijing:Geology Press:116 − 121 (in Chinese).

    Google Scholar

    [48] 刘成东,黄晓宇,万建军,等,2023. 内蒙古巴彦乌拉铀矿床赛汉组砂岩地球化学特征及古环境意义[J]. 东华理工大学学报:自然科学版, 46(2):101 − 112.

    Google Scholar

    Liu C D,Huang X Y,Wan J J,et al.,2023. Geochemical characteristics and paleoenvironmental significance of the Saihan Formation in Bayanwula Uranium Deposit, Inner Mongolia[J]. Journal of East China University of Technology(Natural Science), 46(2):101 − 112 (in Chinese with English abstract).

    Google Scholar

    [49] Liu Y,Li C,Fan J X,et al.,2020. Elevated marine productivity triggered nitrogen limitation on the Yangtze Platform (South China) during the Ordovician-Silurian transition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,554:109833.

    Google Scholar

    [50] Long D G F,1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary,Anticosti Island,Quebec[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,104:49 − 59.

    Google Scholar

    [51] Lu X Z,Kendall B,Stein H J,et al.,2017. Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district,central Sweden[J]. Chemical Geology,457:75 − 94. doi: 10.1016/j.chemgeo.2017.03.015

    CrossRef Google Scholar

    [52] 卢贤志,沈俊,郭伟,等,2021. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响[J]. 地球科学,46(7):2329 − 2340.

    Google Scholar

    Lu X Z,Shen J,Guo W,et al.,2021. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze[J]. Earth Science,46(7):2329 − 2340 (in Chinese with English abstract).

    Google Scholar

    [53] Lu Y B,Hao F,Shen J,et al.,2022. High-resolution volcanism-induced oceanic environmental change and its impact on organic matter accumulation in the Late Ordovician Upper Yangtze Sea[J]. Marine and Petroleum Geology,136:105482. doi: 10.1016/j.marpetgeo.2021.105482

    CrossRef Google Scholar

    [54] Lu Y B,Jiang S,Lu Y C,et al.,2019. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale,South China[J]. Marine and petroleum geology,109:22 − 35. doi: 10.1016/j.marpetgeo.2019.06.007

    CrossRef Google Scholar

    [55] Luo G M,Algeo T J,Zhan R B,et al.,2016. Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,448(1):339 − 348.

    Google Scholar

    [56] Lüning S,Craig J,Loydell D K,et al.,2000. Lower Silurian 'hot shales' in North Africa and Arabia:regional distribution and depositional model[J]. Earth-Science Reviews,49(1-4):121 − 200. doi: 10.1016/S0012-8252(99)00060-4

    CrossRef Google Scholar

    [57] 马奂奂,刘池洋,张龙,等,2019. 鄂尔多斯盆地延长组长7段沉积岩元素地球化学特征及沉积环境分析[J]. 现代地质,33(4):872 − 882.

    Google Scholar

    Ma H H,liu C Y,Zhang L,et al.,2019. Geochemical characteristics and depositional environment implications of sedimentary rocks in the Chang 7 Member of Yanchang Formation in the Ordos Basin[J]. Geosciences,33(4):872 − 882 (in Chinese with English abstract).

    Google Scholar

    [58] Marshall J D,Middleton P D,1990. Changes in marine isotopic composition and the late Ordovician glaciation[J]. Journal of the Geological Society,147(1):1 − 4. doi: 10.1144/gsjgs.147.1.0001

    CrossRef Google Scholar

    [59] McLennan S M,1993. Weathering and global denudation[J]. Journal of Geology,101:295 − 303. doi: 10.1086/648222

    CrossRef Google Scholar

    [60] Melchin M J,Holmden C,2006. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada:Implications for global correlation and sea level change[J]. GFF,128(2):173 − 180. doi: 10.1080/11035890601282173

    CrossRef Google Scholar

    [61] 牟传龙,葛祥英,余谦,等,2019. 川西南地区五峰—龙马溪组黑色页岩古气候及物源特征:来自新地2井地球化学记录[J]. 古地理学报,21(5):835 − 854.

    Google Scholar

    Mou C L,Ge X Y,Yu Q,et al.,2019. Palaeoclimatology and provenance of black shales from Wufeng—Longmaxi Formations in southwestern Sichuan Province:From geochemical records of Well Xindi—2[J]. Journal of Palaeogeography (Chinese Edition),21(5):835 − 854 (in Chinese with English abstract).

    Google Scholar

    [62] Moulton K,Berner R A,1998. Quantification of the effect of plants on weathering:Studies in Iceland[J]. Geology,26(10):895 − 898. doi: 10.1130/0091-7613(1998)026<0895:QOTEOP>2.3.CO;2

    CrossRef Google Scholar

    [63] Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299(5885):715 − 717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [64] Nesbitt H W,Young G M,1996. Petrogenesis of sediments in the absence of chemical weathering of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology,43:341 − 358. doi: 10.1046/j.1365-3091.1996.d01-12.x

    CrossRef Google Scholar

    [65] 聂海宽,李东晖,姜涛,等,2020. 基于笔石带特征的页岩等时地层测井划分方法及意义——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,41(3):273 − 283.

    Google Scholar

    Nie H K,Li D H,Jiang T,et al.,2020. Logging isochronous stratigraphic division of shale based on characteristics of graptolite zones and its significance:A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica,41(3):273 − 283 (in Chinese with English abstract).

    Google Scholar

    [66] Qiu Z,Zou C,Mills B J W,et al,2022. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction[J]. Communications Earth & Environment,3(1):82.

    Google Scholar

    [67] Rafiei M,Kennedy M,2019. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation[J]. Nature Communications,10:3448. doi: 10.1038/s41467-019-11421-4

    CrossRef Google Scholar

    [68] Ramstein G,2011. Climates of the earth and cryosphere evolution[J]. Surveys in Geophysics,32(4-5):329 − 350.

    Google Scholar

    [69] Ran B,Liu S G,Jansa L,et al.,2015. Origin of the Upper Ordovician-lower Silurian cherts of the Yangtze block,South China,and their palaeogeographic significance[J]. Journal of Asian Earth Sciences,108:1 − 17. doi: 10.1016/j.jseaes.2015.04.007

    CrossRef Google Scholar

    [70] Rong J Y,Chen X,Harper D A T,2002. The latest Ordovician Hirnantia Fauna (Brachiopoda) in time and space[J]. Lethaia,35(3):231 − 249. doi: 10.1111/j.1502-3931.2002.tb00081.x

    CrossRef Google Scholar

    [71] 戎嘉余,陈旭,王怿,等,2011. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学:地球科学,41(10):1407 − 1415. doi: 10.1360/zd-2011-41-10-1407

    CrossRef Google Scholar

    Rong J Y,Chen X,Wang Y,et al.,2011. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition:Evidence and implications[J]. Scientia Sinica Terrae,41(10):1407 − 1415 (in Chinese with English abstract). doi: 10.1360/zd-2011-41-10-1407

    CrossRef Google Scholar

    [72] 戎嘉余,方宗杰,陈旭,等,1996. 生物复苏——大绝灭后生物演化历史的第一幕[J]. 古生物学报,35(3):259 − 271.

    Google Scholar

    Rong J Y,Fang Z J,Chen X,et al.,1996. Biotic recovery-first episode of evolution[J]. Acta palaeontologica Sinica,35(3):259 − 271 (in Chinese with English abstract).

    Google Scholar

    [73] 戎嘉余,黄冰,2014. 生物大灭绝研究三十年[J]. 中国科学:地球科学,44(3):377 − 404. doi: 10.1360/zd-2014-44-3-377

    CrossRef Google Scholar

    Rong J Y,Huang B,2014. Study of Mass Extinction over the past thirty years:A synopsis[J]. Scientia Sinica (Terrae),44(3):377 − 404 (in Chinese with English abstract). doi: 10.1360/zd-2014-44-3-377

    CrossRef Google Scholar

    [74] 戎嘉余,詹仁斌,1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响[J]. 现代地质,13(4):390 − 394.

    Google Scholar

    Rong J Y,Zhan R B,1999. Ordovician-Silurian brachiopod fauna turnover in South China[J]. Geoscience,13(4):390 − 394 (in Chinese with English abstract).

    Google Scholar

    [75] 戎嘉余,詹仁斌,2006. 论大灭绝后的幸存类型、复活效应与避难所[J]. 地学前缘,13(6):187 − 198.

    Google Scholar

    Rong J Y,Zhan R B,2006. Re-evaluation of survivors,Lazarus taxa,and refugia from mass extinction[J]. Earth Science Frontiers,13(6):187 − 198 (in Chinese with English abstract).

    Google Scholar

    [76] Scotese C,Wright N,2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic,PALEOMAP Project,Evanston,IL[EB/OL](2018-08-11)[2023-06-22]. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018.

    Google Scholar

    [77] Sepkoski J J,1981. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology,7(1):36 − 53. doi: 10.1017/S0094837300003778

    CrossRef Google Scholar

    [78] Seton M,Williams S E,Domeier M,et al.,2023. Deconstructing plate tectonic reconstructions[J]. Nature Reviews Earth & Environment,4(3):185 − 204.

    Google Scholar

    [79] Shaviv N J,Veizer J,2003. Celestial driver of Phanerozoic climate?[J]. GSA Today,13(7):4 − 10. doi: 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2

    CrossRef Google Scholar

    [80] Shen J,Algeo T J,Chen J B,et al.,2019. Mercury in marine Ordovician-Silurian boundary sections of South China is sulfide hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters,511:130 − 140. doi: 10.1016/j.jpgl.2019.01.028

    CrossRef Google Scholar

    [81] 施振生,袁渊,赵群,等,2022. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学,33(12):1969 − 1985.

    Google Scholar

    Shi Z S,Yuan Y,Zhao Q,et al.,2022. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin,China[J]. Natural Gas Geoscience,33(12):1969 − 1985 (in Chinese with English abstract).

    Google Scholar

    [82] Sigurdsson H,1990. Evidence of volcanic loading of the atmosphere and climate response[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,89:277 − 289.

    Google Scholar

    [83] Su W B,Huff W D,Ettensohn F R,et al.,2009. K-bentonite,black-shale and flysch successions at the Ordovician–Silurian transition,South China:Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research,15(1):111 − 130. doi: 10.1016/j.gr.2008.06.004

    CrossRef Google Scholar

    [84] 孙莎莎,芮昀,董大忠,等,2018. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质,39(6):1087 − 1106.

    Google Scholar

    Sun S S,Rui Y,Dong D Z,et al.,2018. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology,39(6):1087 − 1106 (in Chinese with English abstract).

    Google Scholar

    [85] Tosca N J,Johnston D T,Mushegian A,et al.,2010. Clay mineralogy,organic carbon burial,and redox evolution in Proterozoic oceans[J]. Geochimica et Cosmochimica Acta,74:1579 − 1592. doi: 10.1016/j.gca.2009.12.001

    CrossRef Google Scholar

    [86] Trotter J A,Williams I S,Barnes C R,et al.,2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science,321:550 − 554. doi: 10.1126/science.1155814

    CrossRef Google Scholar

    [87] 涂珅,2015. 中上扬子区奥陶—志留之交无机碳同位素负漂移事件及其成因探讨[D]. 武汉:中国地质大学:22 − 31.

    Google Scholar

    Tu S,2015. Tu S,2015. The preliminary interpretation of the Negative Excursion Event of Inorganic Carbon Isotopes and the mechanism across the Ordovician-Silurian boundary in the Middle and Upper Yangtze Region[D]. Wuhan:China University of Geoscience:22 − 31 (in Chinese with English abstract).

    Google Scholar

    [88] Underwood C J,Crowley S F,Marshall J D,et al.,1997. High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob’s Linn,Scotland) and its global correlation[J]. Journal of the Geological Society,154(4):709 − 718. doi: 10.1144/gsjgs.154.4.0709

    CrossRef Google Scholar

    [89] 王红岩,施振生,孙莎莎,2021. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发,48(5):879 − 890.

    Google Scholar

    Wang H Y,Shi Z S,Sun S S,2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas,China[J]. Petroleum Exploration and Development,48(5):870 − 890 (in Chinese with English abstract).

    Google Scholar

    [90] Wang K,Chatterton B D E,Wang Y,1997. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks,Yangtze Sea,South China:Implications for CO2 changes during the Hirnantian glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,132:147 − 158.

    Google Scholar

    [91] 汪正江,杨菲,刘家洪,等,2020. 滇东北地区五峰—龙马溪组沉积转换及其页岩气地质意义[J]. 沉积与特提斯地质,40(3):129 − 139.

    Google Scholar

    Wang Z J,Yang F,Liu J H,et al.,2020. Sedimentary transformation of the Wufeng-Longmaxi Formation and its geologic significances of shale gas in Northeast Yunnan[J]. Sedimentary Geology and Tethyan Geology,40(3):129 − 139 (in Chinese with English abstract).

    Google Scholar

    [92] Wu L Y,Lu Y C,Jiang S,et al.,2019. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J]. Marine and Petroleum Geology,102:74 − 85. doi: 10.1016/j.marpetgeo.2018.11.017

    CrossRef Google Scholar

    [93] 肖斌,刘树根,冉波,等,2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究[J]. 地球科学,46(7):2449 − 2465.

    Google Scholar

    Xiao B,Liu S G,Ran B,et al.,2021. Study on sedimentary tectonic pattern of Wufeng Formation and Longmaxi Formation in the northern margin of Sichuan Basin,South China[J]. Earth Science,46(7):2449 − 2465 (in Chinese with English abstract).

    Google Scholar

    [94] 熊国庆,刘春来,董国明,等,2021. 南大巴山上奥陶统五峰组—下志留统龙马溪组泥岩元素地球化学特征[J]. 沉积与特提斯地质,41(3):398 − 417.

    Google Scholar

    Xiong G Q,Liu C L,Dong G M,et al.,2021. A study of element geochemistry of mudstones of upper Ordovician Wufeng Formation and lower Silurian Longmaxi Formation in southern Daba Mountain[J]. Sedimentary Geology and Tethyan Geology,41(3):398 − 417 (in Chinese with English abstract).

    Google Scholar

    [95] Yan D T,Chen D Z,Wang Q C,et al.,2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block,south China[J]. Geology,38(7):599 − 602. doi: 10.1130/G30961.1

    CrossRef Google Scholar

    [96] Yan D T,Chen D Z,Wang Q C,et al.,2012. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology,291:69 − 78. doi: 10.1016/j.chemgeo.2011.09.015

    CrossRef Google Scholar

    [97] Yang S C,Hu W X,Fan J X,et al.,2022. New geochemical identification fingerprints of volcanism during the Ordovician-Silurian transition and its implications for biological and environmental evolution[J]. Earth-Science Reviews,228:104016. doi: 10.1016/j.earscirev.2022.104016

    CrossRef Google Scholar

    [98] Yang S C,Hu W X,Wang X L,2021. Mechanism and implications of upwelling from the Late Ordovician to early Silurian in the Yangtze region,South China[J]. Chemical Geology,565:120074. doi: 10.1016/j.chemgeo.2021.120074

    CrossRef Google Scholar

    [99] 杨向荣,严德天,张利伟,等,2018. 赫南特冰期古海洋环境转变及其成因机制研究现状[J]. 沉积学报,36(2):319 − 332.

    Google Scholar

    Yang X R,Yan D T,Zhang L W,et al.,2018. The Genesis of Hirnantian Glaciation and Paleo-Ocean Environment During Ordovician-Silurian Transition[J]. Acta Sedimentologica Sinica,36(2):319 − 332 (in Chinese with English abstract).

    Google Scholar

    [100] 张娣,刘伟,周业鑫,等,2022. 扬子区西南缘奥陶纪末—志留纪初笔石生物地层对比及意义[J]. 沉积与特提斯地质,42(3):413 − 425.

    Google Scholar

    Zhang D,Liu W,Zhou Y X,et al.,2022. Biostratigraphic correlation of graptolites from Late Ordovician to Early Silurian on the southwestern margin of the Yangtze region[J]. Sedimentary Geology and Tethyan Geology,42(3):413 − 425 (in Chinese with English abstract).

    Google Scholar

    [101] 张万良,李余亮,2023. 湘赣边界鹿井地区下寒武统斑点板岩地球化学特征及原岩形成环境[J]. 东华理工大学学报:自然科学版, 46(5):486 − 498.

    Google Scholar

    Zhang W L,Li Y L,2023. Geochemical characteristics and protolith formation environment of the Lower Cambrian spotted slate in the Lujing Area of the Hunan Jiangxi Border[J]. Journal of East China University of Technology(Natural Science), 46(5):486 − 498 (in Chinese with English abstract).

    Google Scholar

    [102] 张喜,张廷山,赵晓明,等,2021. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发,48(4):732 − 744.

    Google Scholar

    Zhang X,Zhang T S,Zhao X M,et al.,2021. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area,South China[J]. Petroleum Exploration and Development,48(4):732 − 744 (in Chinese with English abstract).

    Google Scholar

    [103] Zhao K,Du X,Lu Y,et al.,2021. Is volcanic ash responsible for the enrichment of organic carbon in shales? Quantitative characterization of organicrich shale at the Ordovician-Silurian transition[J]. Geological Society of America Bulletin,133(3/4):837 − 848.

    Google Scholar

    [104] 钟阳阳,2019. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义[D]. 北京:中国地质大学(北京):69 − 81.

    Google Scholar

    Zhong Y Y,2019. Zhong Y Y,2019. Late Ordovician Milankovitch in South China and their implications for Solar System behavior[D]. Beijing:China University of Geoscience (Beijing):69 − 81 (in Chinese with English abstract).

    Google Scholar

    [105] Zhou L,Algeo T J,Shen J,et al.,2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,420(1):223 − 234.

    Google Scholar

    [106] Zhou L,Wignall P B,Su J,et al.,2012. U/Mo ratios and δ98/95 Mo as local and global redox proxies during mass extinction events[J]. Chemical Geology,299(324-325):18 − 39.

    Google Scholar

    [107] 朱逸青,陈更生,刘勇,等,2021. 四川盆地南部凯迪阶—埃隆阶层序地层与岩相古地理演化特征[J]. 石油勘探与开发,48(5):974 − 985.

    Google Scholar

    Zhu Y Q,Chen G S,Liu Y,et al.,2021. Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin,SW China[J]. Petroleum Exploration and Development,48(5):974 − 985 (in Chinese with English abstract).

    Google Scholar

    [108] 邹才能,龚剑明,王红岩,等,2019. 笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J]. 中国石油勘探,24(1):1 − 6.

    Google Scholar

    Zou C N,Gong J M,Wang H Y,et al.,2019. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J]. China Petroleum Exploration,24(1):1 − 6 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(488) PDF downloads(38) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint