2024 Vol. 44, No. 4
Article Contents

ZHANG Yujie, ZHAI Qingguo, ZHANG Yichun, LIU Yiming, ZENG Xiaowen, AN Xianyin, LIU Shilei. 2024. The marine rifted successions of the Late Carboniferous–Early Permian deposits from the South Qiangtang Block in the Rutog area, Northern Xizang: Sedimentary records of a rifting process on the northern Gondwana margin. Sedimentary Geology and Tethyan Geology, 44(4): 773-795. doi: 10.19826/j.cnki.1009-3850.2024.05007
Citation: ZHANG Yujie, ZHAI Qingguo, ZHANG Yichun, LIU Yiming, ZENG Xiaowen, AN Xianyin, LIU Shilei. 2024. The marine rifted successions of the Late Carboniferous–Early Permian deposits from the South Qiangtang Block in the Rutog area, Northern Xizang: Sedimentary records of a rifting process on the northern Gondwana margin. Sedimentary Geology and Tethyan Geology, 44(4): 773-795. doi: 10.19826/j.cnki.1009-3850.2024.05007

The marine rifted successions of the Late Carboniferous–Early Permian deposits from the South Qiangtang Block in the Rutog area, Northern Xizang: Sedimentary records of a rifting process on the northern Gondwana margin

  • The South Qiangtang Block (SQB) is widely acknowledged as part of the Cimmerian Continent, which rifted away from the northern Gondwana margin during the Early Permian, marking the initial opening of the Bangong-Nujiang Meso-Tethys Ocean. However, the sedimentary response to this rifting event remains unconfirmed, leaving the event ambiguous. In this study, five sedimentary successions are identified in the Rutog area, Northern Xizang, each characterized by distinct facies that record different stages in the tectonic evolution and climatic influences on the basin, along with associated changes in the rates of basin subsidence and sediment accommodation. Succession Ⅰ, formed in the Late Carboniferous to Asselian age, shows that glaciomarine sediments compensated for the sediment accommodation generated by the basin subsidence, resulting from tectonic activities and climatic factors in the early stage of the syn-rift. During the Sakmarian to early Artinskian age, the glaciomarine retrogradational sequence represented by the Zhanjin Formation (Succession Ⅱ) and the following progradational-aggradational sequences represented by the Qudi Formation (Succession Ⅲ) mark the climax and standstill stages of the first episode of the syn-rift tectonic activities, respectively. In the late Artinskian to Kungurian age, the second episode of syn-rift is manifested by the Succession Ⅳ and Ⅴ. And the former retrogradational sequence (Succession Ⅳ), reflected in the lower part of the Tunlonggongba Formation, indicates a climax stage of syn-rift tectonic activity, while the latter aggradational-progradational sequences (Succession Ⅴ), represented by the upper part of the Tunlonggongba Formation, mark a stage of tectonic quiescence. Therefore, these Early Permian sedimentary successions in the SQB are best explained by the tectonic subsidence resulting from the rifting of the SQB from the Gondwana margin, suggesting an early Permian timeline for the initial opening of the Bangong-Nujiang Meso-Tethys Ocean.

  • 加载中
  • [1] Allen P A,Allen J R,2013. Basin analysis:Principles and application to petroleum play assessment[M]. John Wiley & Sons:619.

    Google Scholar

    [2] Angiolini L,Balini M,Garzanti E,et al.,2003. Gondwanan deglaciation and opening of Neotethys:The Al Khlata and Saiwan Formations of Interior Oman[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 196(1-2):99 − 123.

    Google Scholar

    [3] Bhattacharya J,2010. Deltas[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's, Newfoundland:Geological Association of Canada:233 − 264.

    Google Scholar

    [4] 曹竣锋,宋春彦,付修根,等,2015. 羌塘盆地羌资5井二叠系展金组烃源岩基本特征[J]. 海相油气地质, 20(2):15 − 20.

    Google Scholar

    Cao J F,Song C Y,Fu X G,et al.,2015. Basic characteristics of Permian Zhanjin source rock in Well Qiangzi-5 in Qiangtang Basin[J]. Marine Origin Petroleum Geology, 20(2):15 − 20 (in Chinese with English abstract).

    Google Scholar

    [5] Catuneanu O,2006. Principles of sequence stratigraphy[M]. 1st ed. Amsterdam:Elsevier:375.

    Google Scholar

    [6] Chen S S,Shi R D,Fan W M,et al.,2017. Early Permian mafic dikes in the Nagqu area,central Xizang,China,associated with embryonic oceanic crust of the Meso-Tethys Ocean[J]. Journal of Geophysical Research:Solid Earth, 122(6):4172 − 4190.

    Google Scholar

    [7] 陈文彬,付修根,谭富文,等,2013. 藏北羌塘盆地石炭系烃源岩的发现及其油气地质意义[J]. 地质通报, 32(7):1105 − 1112.

    Google Scholar

    Chen W B,Fu X G,Tan F W,et al.,2013. The discovery of the Carboniferous source rock in Qiangtang Basin of Xizang and its geological significance[J]. Geological Bulletin of China, 32(7):1105 − 1112 (in Chinese with English abstract).

    Google Scholar

    [8] 陈耀飞,高金汉,王根厚,等,2016. 西藏荣玛地区尼俄玛山下二叠统曲地组沉积特征[J]. 古地理学报,18(1):49 − 63.

    Google Scholar

    Chen Y F,Gao J H,Wang G H,et al.,2016. Sedimentary characteristics of the Lower Permian Qudi Formation of Ni'ema Mountain in Rongma area,Xizang [J]Journal of Palaeogeography,18(1):49 − 63 (in Chinese with English abstract).

    Google Scholar

    [9] 程立人,陈寿铭,张以春,等,2006. 西藏羌北地区石炭纪地层的发现[J]. 地学前缘, 13(4):240 − 243.

    Google Scholar

    Cheng L R,Chen S M,Zhang Y C,et al.,2006. Discovery of Carboniferous strata in northern Qiangtang basin,Xizang[J]. Earth Science Frontiers, 13(4):240 − 243 (in Chinese with English abstract).

    Google Scholar

    [10] Dalrymple R W,2010. Tidal depositional systems[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's,Newfoundland:Geological Association of Canada:201 − 231.

    Google Scholar

    [11] Dan W,Wang Q,Murphy J B,et al., 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province:Implications for origin of the Neo-Tethys Ocean[J]. Earth and Planetary Science Letters,568:117054.

    Google Scholar

    [12] 丁林,李震宇,宋培平,2017. 青藏高原的核心来自南半球冈瓦纳大陆[J]. 中国科学院院刊,32(9):945 − 950.

    Google Scholar

    Ding L,Li Z Y,Song P P,2017. Core fragments of Xizang Plateau from Gondwanaland united in Northern Hemisphere[J]. China Academic Journal,32(9):945 − 950 (in Chinese with English abstract).

    Google Scholar

    [13] Eyles C H,Eyles N,Miall A D,1985. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 51(1):15 − 84.

    Google Scholar

    [14] Eyles C H,Eyles N,2010. Glacial deposits[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's, Newfoundland: Geological Association of Canada: 73 − 104.

    Google Scholar

    [15] Eyles N,1993. Earth's Glacial Record and Its Tectonic Setting[J]. Earth-Science Reviews, 35(1-2):1 − 248.

    Google Scholar

    [16] Eyles N,Eyles C H,Apak S N,et al.,2001. Permian-Carboniferous tectono-stratigraphic evolution and petroleum potential of the northern Canning Basin,Western Australia[J]. AAPG Bulletin, 85(6):989 − 1006.

    Google Scholar

    [17] Eyles N,Eyles C H,Miall A D,1983. Lithofacies types and vertical profile models: An alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences[J]. Sedimentology, 30:393 − 410.

    Google Scholar

    [18] Eyles N,Mory A J,Backhouse J,2002. Carboniferous-Permian palynostratigraphy of west Australian marine rift basins:resolving tectonic and eustatic controls during Gondwanan glaciations[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 184(3-4):305 − 319.

    Google Scholar

    [19] Fan J J,Niu Y L,Luo A B,et al.,2021. Timing of the Meso-Tethys Ocean opening:Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane,Xizang Plateau[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,567:110265.

    Google Scholar

    [20] Fan J J,Li C,Wang M,et al.,2015. Features,provenance,and tectonic significance of Carboniferous–Permian glacial marine diamictites in the Southern Qiangtang–Baoshan block,Xizang Plateau[J]. Gondwana Research, 28(4):1530 − 1542.

    Google Scholar

    [21] Fielding C R,Frank T D,Isbell J L,2008. The late Paleozoic ice age–A review of current understanding and synthesis of global climate patterns[J]. Geological Society of America Special Papers,441:343 − 354.

    Google Scholar

    [22] Gawthorpe R L,Leeder M R,2000. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 12:195 − 218.

    Google Scholar

    [23] Hou Q,Han Z Z,Mou C L,et al.,2021. Petrography and geochemistry of Upper Carboniferous-Early Permian sandstones from Zhanjin Formation in Qiwu area,South Qiangtang Basin,Xizang:Implications for provenance,source weathering and tectonic setting[J]. Geochemistry International, 59(13):1274 − 1292.

    Google Scholar

    [24] Hu J J,Li Q,Fang N Q,et al.,2015. Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone,Qiangtang Basin,Xizang:Insights into source-area weathering,provenance,recycling,and tectonic setting[J]. Arabian Journal of Geosciences, 8(8):5373 − 5388.

    Google Scholar

    [25] Hu X M,Ma A L,Xue W W,et al.,2022. Exploring a lost ocean in the Xizang Plateau:Birth,growth,and demise of the Bangong-Nujiang Ocean[J]. Earth-Science Reviews, 229:104031.

    Google Scholar

    [26] 黄继钧,2000. 羌塘盆地性质及构造演化[J]. 地质力学学报,6(4):58 − 66.

    Google Scholar

    Huang J J,2000. Nature of the Qiangtang basin and its tectonic evolution[J]. Journal of Geomechanics, 6(4):58 − 66 (in Chinese with English abstract).

    Google Scholar

    [27] Iasky R P,Mory A J,Ghori K A R,et al.,1998. Structure and petroleum potential of the southern Merlinleigh Sub-basin,Carnarvon Basin,Western Australia[Z]. Perth:Geological Survey of Western Australia:61.

    Google Scholar

    [28] Isbell J L,Miller M F,Wolfe K L,et al.,2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems?[J]. Geological Society of America Special papers, 370:5 − 24.

    Google Scholar

    [29] 焦鹏伟,梁晓,王根厚,等,2017. 藏北荣玛乡亚丹地区下二叠统曲地组的厘定及大地构造意义[J]. 地质通报, 36(2-3):181 − 189.

    Google Scholar

    Jiao P W,Liang X,Wang G H,et al.,2017. Redefinition of the Lower Permian Qudi Formation in Yadan area,Rongma Town,northern Xizang,and its tectonic significance[J]. Geological Bulletin of China, 36(2-3):181 − 189 (in Chinese with English abstract).

    Google Scholar

    [30] Ju Q,Zhang Y C,Yuan D X,et al.,2022. Permian foraminifers from the exotic limestone blocks within the central Qiangtang Metamorphic Belt, Xizang and their geological implications[J]. Journal of Asian Earth Sciences,239:105426.

    Google Scholar

    [31] Kapp P,Yin A,Manning C E,et al.,2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt,central Xizang[J]. Tectonics,22(4):17.

    Google Scholar

    [32] 赖绍聪,秦江锋,2009. 青藏高原双湖地区二叠系玄武岩地球化学及其大地构造意义[J]. 地学前缘,16(2):70 − 78.

    Google Scholar

    Lai S C,Qin J F,2009. Geochemistry and Tectonic significance of the Permian basalt in Shuanghu area,Xizang Plateau[J]. Earth Science Frontiers,16(2):70 − 78 (in Chinese with English abstract).

    Google Scholar

    [33] Levell B K,Braakman J H,Rutten K W,1988. Oil-bearing sediments of Gondwana glaciation in Oman[J]. AAPG Bulletin, 72(7):775 − 796.

    Google Scholar

    [34] 李才,解超明,王明,等,2016. 羌塘地质[M]. 北京:地质出版社:1−681.

    Google Scholar

    Li C,Xie C M,Wang M,et al.,2016. Geology of the Qiangtang Region[M]. Beijing:Geological Publishing House:1 − 681 (in Chinese with English abstract).

    Google Scholar

    [35] 李才,1987. 龙木错−双湖−澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报,(2):155 − 166.

    Google Scholar

    Li C,1987. The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in Northern Xizang,China[J]. Journal of Changchun College of Geology,(2):155 − 166 (in Chinese with English abstract).

    Google Scholar

    [36] Li W P,Wang Z W,Wang J,et al.,2022. Depositional age,provenance,and palaeoenvironment of the Lower Permian mudstones in the Qiangtang Basin,Xizang:Evidence from geochronology and geochemistry[J]. Geological Journal, 57(4):1709 − 1723.

    Google Scholar

    [37] 梁定益,聂泽同,郭铁鹰,等,1983. 西藏阿里喀喇昆仑南部的冈瓦纳一特提斯相石炭二叠系[J]. 地球科学, 19(1):9 − 27.

    Google Scholar

    Liang D Y,Nie Z T,Guo T Y,et al.,1983. Permo-Carboniferous Gondwana-Tethys facies in Southern Karakoran,Ali,Xizang[J]. Earth Science, 19(1):9 − 27 (in Chinese with English abstract).

    Google Scholar

    [38] 刘本培,崔新省,1983. 西藏阿里日土县宽铰蛤( Eurydesma )动物群的发现及其生物地理区系意义[J]. 地球科学, 19(1):79 − 92.

    Google Scholar

    Liu B P,Cui X S,1983. Discovery of Eurydesma fauna from Rutog,northwest Xizang,and its biogeographic significance[J]. Earth Science, 19(1):79 − 92 (in Chinese with English abstract).

    Google Scholar

    [39] Ma Y M,Wang Q,Wang J,et al.,2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic[J]. Geophysical Research Letters, 46(2):689 − 697.

    Google Scholar

    [40] Martins-Neto M A,Catuneanu O,2010. Rift sequence stratigraphy[J]. Marine and Petroleum Geology,27(1):247 − 253.

    Google Scholar

    [41] Merle O,2011. A simple continental rift classification[J]. Tectonophysics,513(1-4):88 − 95.

    Google Scholar

    [42] Metcalfe I,1996. Pre-Cretaceous evolution of SE Asian terranes[J]. Geological Society,London,Special Publications,106(1):97 − 122.

    Google Scholar

    [43] Metcalfe I,2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences,66:1 − 33.

    Google Scholar

    [44] Metcalfe I,2021. Multiple Tethyan ocean basins and orogenic belts in Asia[J]. Gondwana Research, 100:87 − 130.

    Google Scholar

    [45] Miall A D,1977. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 13(1):1 − 62.

    Google Scholar

    [46] Miall A D,2022. Stratigraphy:The modern synthesis[M]. Springer:341 − 417.

    Google Scholar

    [47] 牟传龙,2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质,42(3):331 − 339.

    Google Scholar

    Mou C L,2022. Suggested naming and classification of the word facies[J]. Sedimentary Geology and Tethyan Geology,42(3):331 − 339 (in Chinese with English abstract).

    Google Scholar

    [48] Neves L F,Guedes C C F,Vesely F F,2019. Facies,petrophysical and geochemical properties of gravity-flow deposits in reservoir analogs from the Itararé Group (late Carboniferous),Paraná Basin,Brazil[J]. Marine and Petroleum Geology,110:717 − 736.

    Google Scholar

    [49] 聂泽同,宋志敏,1983a. 西藏阿里地区日土县下二叠统曲地组的䗴类[J]. 地球科学,19(1):29 − 42.

    Google Scholar

    Nie Z T,Song Z M,1983a. Fusulinids of Lower Permian Qudi Formation from Rutog of Xizang,China[J]. Earth Science,19(1):29 − 42 (in Chinese with English abstract).

    Google Scholar

    [50] 聂泽同,宋志敏,1983b. 西藏阿里地区日土县下二叠统吞龙共巴组的䗴类[J]. 地球科学,19(1):43 − 55.

    Google Scholar

    Nie Z T,Song Z M,1983b. Fusulinids of Lower Permian Tunlonggongba Formation from Rutog of Xizang[J]. Earth Science,19:43 − 55 (in Chinese with English abstract).

    Google Scholar

    [51] Posamentier H W, Vail P R, 1988. Eustatic controls on clastic deposition II - sequence and systems tract models[C]// Wilgus C K, Hastings B S, Kendall C G St. C et al., eds. Sea level changes: an integrated approach.Tulsa, Oklahoma: SEPM Special Publication, 42: 124-154.

    Google Scholar

    [52] Postma G,1986. Classification for sediment gravity flow deposits based on flow conditions during sedimentation[J]. Geology,14:291 − 294.

    Google Scholar

    [53] Postma G,1990. An analysis of the variation in delta architecture[J]. Terra Nova,2(2):124 − 130.

    Google Scholar

    [54] Potter P E,Franca A B,Spencer C W,et al.,1995. Petroleum in glacially-related sandstones of Gondwana:A review[J]. Journal of Petroleum Geology,18(4):397 − 420.

    Google Scholar

    [55] Pullen A,Kapp P,Gehrels G E,et al.,2011. Metamorphic rocks in central Xizang:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin,123(3-4):585 − 600.

    Google Scholar

    [56] Ravnås R,Steel R J,1998. Architecture of marine rift-basin successions[J]. AAPG Bulletin,82(1):110 − 146.

    Google Scholar

    [57] Sarg J F, 1988. Carbonate sequence stratigraphy[C]//Wilgus C K, Hastings B S, Kendall C G St. C et al., eds. Sea level changes: an integrated approach,Tulsa, Oklahoma: SEPM Special Publication 42:154-181.

    Google Scholar

    [58] Şengör A M C,1984. The Cimmeride orogenic system and the tectonics of Eurasia[J]. GSA Special Paper,195:1 − 74.

    Google Scholar

    [59] Shanmugam G,2002. Ten turbidite myths[J]. Earth-Science Reviews,58(3-4):311 − 341.

    Google Scholar

    [60] Shanmugam G,2016. The seismite problem[J]. Journal of Palaeogeography,5(4):318 − 362.

    Google Scholar

    [61] Shanmugam G,2006. The tsunamite problem[J]. Journal of Sedimentary Research,76(5):718 − 730.

    Google Scholar

    [62] Shellnutt J G,Bhat G M,Wang K,et al.,2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps,Kashmir,India:Geochemical evidence for shallow melting of the mantle[J]. Lithos,204:159 − 171.

    Google Scholar

    [63] Shen S,Sun T,Zhang Y,et al.,2016. An upper Kungurian/lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Xizang and its palaeobiogeographical implications[J]. Palaeoworld,25(4):519 − 538.

    Google Scholar

    [64] 沈树忠, 张以春, 袁东勋, 等. 2024. 青藏高原及其周边二叠纪综合地层、生物群以及古地理和古气候演化[J]. 中国科学: 地球科学, 54(4): 1125 − 1170.

    Google Scholar

    Shen S Z,Zhang Y C,Yuan D X,et al.,2024. Permian integrative stratigraphy,biotas,paleogeographical and paleoclimatic evolution of the Qinghai-Xizang Plateau and its surrounding areas [J]. Scientia Sinica(Terrae),67(4):1107 − 1151.

    Google Scholar

    [65] 宋春彦,王剑,付修根,等,2012. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. 吉林大学学报:地球科学版,42(2):526 − 535.

    Google Scholar

    Song C Y,Wang J,Fu X G,et al.,2012. Late Triassic Paleomagnetic data from the Qiangtang terrane of Xizang Plateau and their tectonic significances[J]. Journal of Jilin University (Earth Science Edition),42(2):526 − 535 (in Chinese with English abstract).

    Google Scholar

    [66] 宋春彦, 王剑, 付修根, 等, 2012. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. 吉林大学学报: 地球科学版, 42(2): 526 − 535.

    Google Scholar

    Van Wagoner J C,Mitchum R M,Campion K M,et al.,1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops:concepts for high-resolution correlation of time and facies[M]. Tulas,Oklahoma:The American Association of Petroleum Geologists.

    Google Scholar

    [67] Veevers J J,2006. Updated Gondwana (Permian–Cretaceous) earth history of Australia[J]. Gondwana Research,9(3):231 − 260.

    Google Scholar

    [68] 王成善,胡承祖,吴瑞忠,等,1987. 西藏北部查桑−茶布裂谷的发现及其地质意义[J]. 成都地质学院学报,14(2):33 − 46.

    Google Scholar

    Wang C S,Hu C Z,Wu R Z,et al.,1987. Significance of the discovery of Chasang-Chabu rift in Northern Xizang[J]. Journal of Chengdu College of Geology,14(2):33 − 46 (in Chinese with English abstract).

    Google Scholar

    [69] 王成善, 胡承祖, 吴瑞忠, 等, 1987. 西藏北部查桑−茶布裂谷的发现及其地质意义[J]. 成都地质学院学报, 14(2): 33 − 46.

    Google Scholar

    Wang M,Li C,Zeng X W,et al.,2019. Petrogenesis of the southern Qiangtang mafic dykes,Xizang:Link to a late Paleozoic mantle plume on the northern margin of Gondwana?[J]. GSA Bulletin,131(11-12):1907 − 1919.

    Google Scholar

    [70] Wang Z W,Li W P,Wang J,et al.,2022. Controls on organic matter accumulation in marine mudstones from the Lower Permian Zhanjin Formation of the Qiangtang Basin,eastern Tethys[J]. Marine and Petroleum Geology,138:105556.

    Google Scholar

    [71] Wilson J L,1975. Carbonate facies in geologic history[M].New York: Springer-Verlag.

    Google Scholar

    [72] 吴福元,万博,赵亮,等,2020. 特提斯地球动力学[J]. 岩石学报,36(6):1627 − 1674.

    Google Scholar

    Wu F Y,Wan B,Zhao L,et al.,2020. Tethyan geodynamics[J]. Acta Petrologica Sinica 36,1627 − 1674 (in Chinese with English abstract).

    Google Scholar

    [73] 武桂春,姚建新,纪占胜,2009. 西藏北羌塘中部地区晚石炭的蜓类动物群[J]. 地质通报,28(9):1276 − 1280.

    Google Scholar

    Wu G Z,Yao J X,Ji Z S,2009. The Late Carboniferous Fusulinids in the central part of northern Qiangtang,Xizang,China[J]. Geological Bulletin of China,28(9):1276 − 1280 (in Chinese with English abstract).

    Google Scholar

    [74] 吴瑞忠,蓝伯龙,1990. 西藏西北部晚二叠世地层新资料[J]. 地层学杂志, 14(3):216 − 221.

    Google Scholar

    Wu R Z,Lan B L,1990. Recent information on the Upper Permian rocks of Northwest Xizang[J]. Journal of Stratigraphy, 14(3):216 − 221 (in Chinese with English abstract).

    Google Scholar

    [75] 吴瑞忠, 蓝伯龙, 1990. 西藏西北部晚二叠世地层新资料[J]. 地层学杂志, 14(3): 216 − 221.

    Google Scholar

    Xu H P,Zhang Y,Yuan D,et al.,2022. Quantitative palaeobiogeography of the Kungurian–Roadian brachiopod faunas in the Tethys:Implications of allometric drifting of Cimmerian blocks and opening of the Meso-Tethys Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 601:111078.

    Google Scholar

    [76] Xu W,Dong Y S,Zhang X Z,et al.,2016. Petrogenesis of high-Ti mafic dykes from Southern Qiangtang,Xizang:Implications for a ca. 290 Ma large igneous province related to the early Permian rifting of Gondwana[J]. Gondwana Research, 36:410 − 422.

    Google Scholar

    [77] 许志琴,杨经绥,侯增谦,等,2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质,43(1):1 − 42.

    Google Scholar

    Xu Z Q,Yang J S,Hou Z Q,et al.,2016. The progress in the study of continental dynamics of the Xizang Plateau[J]. Geology in China,43(1):1 − 42 (in Chinese with English abstract).

    Google Scholar

    [78] 许志琴, 杨经绥, 侯增谦, 等, 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1 − 42.

    Google Scholar

    Yin A,Harrison T M,2000. Geologic evolution of The Himalayan-Xizang Orogen [J]. Annual Review of Earth and Planetary Sciences,28:211 − 280.

    Google Scholar

    [79] Yuan D X,Zhang Y C,Qiao F,et al.,2022. A new late Kungurian (Cisuralian,Permian) conodont and fusuline fauna from the South Qiangtang Block in Xizang and their implications for correlation and paleobiogeography[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,589:110822.

    Google Scholar

    [80] Zanchi A,Fürsich F T,Santosh M,2015. Cimmerian terranes:Preface[J]. Journal of Asian Earth Sciences,102:1 − 3.

    Google Scholar

    [81] Zhai Q G,Jahn B M,Su L,et al.,2013. SHRIMP zircon U–Pb geochronology,geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane,northern Xizang and geodynamic implications[J]. Lithos,174:28 − 43.

    Google Scholar

    [82] Zhang Y J,An X Y,Liu S L,et al.,2023. The sedimentary facies and tectono-stratigraphic successions of the Carboniferous–Lower Permian deposits in western South Qiangtang Block:Implication for a rifting process on the Gondwana margin[J]. Palaeoworld,33(3):706-723. doi:10.1016/j.palwor.2023.07.002

    Google Scholar

    [83] Zhang Y C,Shen S Z,Shi G R,et al.,2012. Tectonic evolution of the Qiangtang Block,northern Xizang during the Late Cisuralian (Late Early Permian):Evidence from fusuline fossil records[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,350-352:139 − 148.

    Google Scholar

    [84] Zhang Y X,Zhang K J,2017. Early Permian Qiangtang flood basalts,northern Xizang,China:A mantle plume that disintegrated northern Gondwana?[J]. Gondwana Research, 44:96 − 108.

    Google Scholar

    [85] Zhang Y C,Shi G R,Shen S Z,2013. A review of Permian stratigraphy,palaeobiogeography and palaeogeography of the Qinghai–Xizang Plateau[J]. Gondwana Research. 24(1):55 − 76.

    Google Scholar

    [86] Zhang Y C,Shen S Z,Zhai Q G,et al.,2016. Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area,northern Xizang:implications for the origin of the Qiangtang Metamorphic Belt[J]. Geological Magazine,153(3):537 − 543.

    Google Scholar

    [87] 张以春,张予杰,袁东勋,等,2019. 班公湖−怒江洋打开时间的地层古生物约束[J]. 岩石学报,35(10):3083 − 3096.

    Google Scholar

    Zhang Y C,Zhang Y J,Yuan D X,et al.,2019. Stratigraphic and paleontological constraints on the opening time of the Bangong-Nujiang Ocean[J]. Acta Petrologica Sinica,35(10):3080 − 3096 (in Chinese with English abstract).

    Google Scholar

    [88] 张予杰,张以春,王冬兵,等,2021. 青藏高原中南部前寒武系及古生界岩石地层组成和时代特征[J]. 地质通报,40(11):1814 − 1835.

    Google Scholar

    Zhang Y J,Zhang Y C,Wang D B,et al.,2021. Precambrian-Paleozoic strata and their ages in the central and southern Xizang Plateau[J]. Geological Bulletin of China,40(11):1814 − 1835 (in Chinese with English abstract).

    Google Scholar

    [89] 张予杰, 张以春, 王冬兵, 等, 2021. 青藏高原中南部前寒武系及古生界岩石地层组成和时代特征[J]. 地质通报, 40(11): 1814 − 1835.

    Google Scholar

    Zhang Y X,Li Z W,Zhu L D,et al.,2016. Newly discovered eclogites from the Bangong Meso – Tethyan suture zone (Gaize,central Xizang,western China):mineralogy,geochemistry,geochronology,and tectonic implications[J]. International Geology Review,58(5):574 − 587.

    Google Scholar

    [90] Zhou Y N,Cheng X,Yu L,et al.,2016. Paleomagnetic study on the Triassic rocks from the Lhasa Terrane,Xizang,and its paleogeographic implications[J]. Journal of Asian Earth Sciences,121:108 − 119.

    Google Scholar

    [91] Zhu D C,Zhao Z D,Niu Y L,et al.,2013. The origin and pre-Cenozoic evolution of the Xizang Plateau[J]. Gondwana Research,23(4):1429 − 1454. doi: 10.1016/j.jseaes.2016.02.006

    CrossRef Google Scholar

    [92] Zhu R X,Zhao P,Zhao L,2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica(Terrae),65(1):1 − 24. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [93] 沈树忠,张以春,袁东勋,等. 2024. 青藏高原及其周边二叠纪综合地层、生物群以及古地理和古气候演化[J]. 中国科学:地球科学,54(4):1125 − 1170.

    Google Scholar

    [94] 朱日祥,赵盼,赵亮,2022. 新特提斯洋演化与动力过程[J]. 中国科学:地球科学, 52(1):1 − 25.

    Google Scholar

    Zhu R X, Zhao P, Zhao L, 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica(Terrae), 65(1): 1 − 24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(308) PDF downloads(55) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint