2024 Vol. 44, No. 1
Article Contents

GUO Jincheng, NIE Fei, WU Songyang, LIU Hong, ZOU Jiazuo, RAN Guanghui, LEI Dong, LAI Yongge. 2024. The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan. Sedimentary Geology and Tethyan Geology, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004
Citation: GUO Jincheng, NIE Fei, WU Songyang, LIU Hong, ZOU Jiazuo, RAN Guanghui, LEI Dong, LAI Yongge. 2024. The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan. Sedimentary Geology and Tethyan Geology, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004

The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan

More Information
  • The Mianning-Dechang rare earth metallogenic belt is one of the most important rare earth resource areas in China. All discovered rare earth deposits are related to the carbonatite-alkaline complex that formed during the Himalayan period. It is controversial whether ion adsorption rare earth deposits exist along this metallogenic belt. In this paper, we conducted a detailed survey of Mantoushan potash feldspar granite in Dechang and verified through three shallow drill coress that the thickness of the weathering crust in this area reached 17 meters. According to the degree of weathering, the weathering crust is divided into humus, clay, full regolith, and semi-regolith. The total phase rare earth oxide (TREO) grade of the regolith crust varies between 0.07% and 0.19%, with an average of 0.12%, which is higher than the industrial grade of 0.05%. Additionally, the grades of separated quantities of rare earth oxides (SREO) range between 0.02% and 0.056%, with an average of 0.03%, which is higher than the cutoff grade of 0.02%. The partition range of heavy rare earth is between 50% and 72%, averaging at 62%. The variation of rare earth grade within the weathering crust profile exhibits two patterns: "upper low-lower high" and "upper high-lower low". The full regolith and clay layers are identified as the primary ore-bearing layers for both patterns. The Mantoushan deposit is the first ion adsorption heavy rare earth ore deposit found in the Mianning-Dechang rare earth metallogenic belt, which has great economic value and scientific significance.

  • 加载中
  • [1] 柏杨, 邓志祥, 毕晓路, 等, 2021. 云南省澜沧地区风化壳型稀土矿化的新发现及找矿前景[J]. 地质与勘探, 57(4): 762-783

    Google Scholar

    Bai Y, Deng Z X, Bi X L, et al. , 2021. New Discovery of Rare-Earth Mineralization of the Weathering Crust Type and Ore-Search Prospect in the Lancang Area, Yunnan Province[J]. Geology And Exploration, 57(4): 762-783.

    Google Scholar

    [2] 从柏林, 1989. 攀西裂谷形成与演化[M]. 北京: 科学出版社, 1 − 427

    Google Scholar

    Cong B L, 1989. The formation and evolution of Panzhihua-Xichang Rift[M]. Beijing: Science Press, 1 − 427(in Chinese).

    Google Scholar

    [3] 陈德潜, 吴静淑, 1990. 离子吸附型稀土矿床的成矿机制[J]. 中国稀土学报, 8(2): 175-179

    Google Scholar

    Chen D Q, Wu J S, 1990. Metallogenic mechanism of ion - adsorbed rare earth deposits[J]. Journal of the Chinese Society of Rare Earths, 8(2): 175-179.

    Google Scholar

    [4] Chau N D, Jadwiga P, Adam P, et al. , 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam[J]. Vietnam Journal of Earth Sciences, 39(1): 14-26.

    Google Scholar

    [5] 池汝安, 刘雪梅, 2019. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 37(2): 129-140

    Google Scholar

    Chi R A, Liu X M, 2019. Prospect and development of weathered crust elution-deposited rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 37(2): 129-140.

    Google Scholar

    [6] 范国强, 秦宇龙, 詹涵钰, 等, 2022. 四川攀西地区稀土资源成矿规律及找矿靶区[J]. 中国地质调查, 9(1): 23 − 31

    Google Scholar

    Fan G Q, Qin Y L, Zhan H Y, et al., 2022. Metallization regularity and prospecting target area in Panzhihua-Xichang area of Sichuan Province[J]. Geological Survey Of China, 9(1): 23 − 31(in Chinese with English abstract).

    Google Scholar

    [7] 黄典豪, 吴澄宇, 韩久竹, 1989. 江西足洞和关西花岗岩的岩石学、稀土元素地球化学及成岩机制[J]. 地质学报, (2): 139-157

    Google Scholar

    Huang D H, Wu C Y, Han J Z, 1989. Petrology REE geochemistry and rock-forming mechanism of the Zudong and Guanxi granites, Jiangxi[J]. Acta Geologica Sinica, (2): 139-157.

    Google Scholar

    [8] 侯增谦, 卢记仁, 林盛中, 2005. 峨眉地幔柱轴部的榴辉岩-地幔岩源区: 主元素、痕量元素及Sr-Nd-Pb同位素证据[J]. 地质学报, 79(2): 200-219

    Google Scholar

    Hou Z Q, Lu J R, Lin S Z, 2005. The Axial zone consisting of pyrolite and eclogite in the emei mantle plume: major, trace element and Sr-Nd-Pb isotope evidence[J]. Acta Geologica Sinica, 79(2): 200-219.

    Google Scholar

    [9] 侯增谦, 田世洪, 谢玉玲, 等, 2008. 川西冕宁—德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质, 27(2): 145-176

    Google Scholar

    Hou Z Q, Tian S H, Xie Y L, et al. , 2008. Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China: geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits, 27(2): 145-176 .

    Google Scholar

    [10] 侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 65(3): 3651-3652

    Google Scholar

    Hou Z Q, Chen J, Zhai M G, 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(3): 3651-3652 .

    Google Scholar

    [11] Hou Z Q, Tian S, Xie Y L, et al. , 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone. SW China[J]. Ore Geology Review, 36: 65-89. doi: 10.1016/j.oregeorev.2009.03.001

    CrossRef Google Scholar

    [12] Hill S E and Rosenbaum M S, 1998. Assessing the significant factors in a rock weathering system[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 31(2): 85-94. doi: 10.1144/GSL.QJEG.1998.031.P2.02

    CrossRef Google Scholar

    [13] 何一, 孙庆, 陈宇, 2011. 四川德昌安宁河谷风电场风能资源评估[J]. 水电设计, 27(4): 83-86

    Google Scholar

    He Y, Sun Q, Chen Y, 2011. Wind energy resource assessment of Anning valley wind farm in Dechang, Sichuan [J]. Hydropower Design, 27(4): 83-86 .

    Google Scholar

    [14] 胡瑞忠, 温汉捷, 叶淋, 等, 2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 65(3): 3700 − 3714

    Google Scholar

    Hu R Z, Wen H J, Ye L, et al., 2020. Metallogeny of critical metals in the Southwestern Yangtze Block [J]. Chinese Science Bulletin, 65: 3700 − 3714 (in Chinese with English abstract).

    Google Scholar

    [15] 何宏平, 杨武斌, 2022. 我国稀土资源现状和评价[J]. 大地构造域成矿学, 46(5): 1-13

    Google Scholar

    He H P, Yang W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 1-13 .

    Google Scholar

    [16] Imai A, Yonezu K, Sanematsu K, 2012. Rare earth elements in hydrothermally altered granitic rocks in the Ranong and Takua Pa tin-field, Southern Thailand[J]. Resource Geology, 63(1): 84-98.

    Google Scholar

    [17] 李立主, 1993. 论攀西地区离子相稀土矿的基本特征及找矿前景[J]. 四川地质学报, 13(1): 41-45

    Google Scholar

    Li L Z, 1993. On basic characteristics and prospecting potential of ore deposits of ion phase rare-earth elements in Panzhihua-Xichang region[J]. Acta Geologica Sichuan, 13(1): 41-45 .

    Google Scholar

    [18] 李立主, 2001. 论攀西地区稀有稀土矿的基本特征及开发前景[J]. 四川地质学报, 2001(3): 150-152

    Google Scholar

    Li L Z, 2001. Geologic features and exploitation perspective of REE ore deposits in Panzhihua-Xichang region[J]. Acta Geologica Sichuan, 2001(3): 150-152 .

    Google Scholar

    [19] Li M Y H, Zhou M F, 2020. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits[J]. American Mineralogist, 105: 92-108. doi: 10.2138/am-2020-7061

    CrossRef Google Scholar

    [20] Li M Y H, Zhou M F, Williams-Jones A E, 2020. Controls on the dynamics of rare earth elements during sub-tropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 115 (5): 1097-1118 doi: 10.5382/econgeo.4727

    CrossRef Google Scholar

    [21] 陆蕾, 王登红, 王成辉, 等, 2020. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 94(1): 179-191

    Google Scholar

    Lu L, Wang D H, Wang C H, et al. , 2020. The metallogenic regularity of ion-adsorption type REE deposit in Yunnan Province[J]. Acta Geologica Sinica, 94(1): 179-191.

    Google Scholar

    [22] 赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望[J]. 地质力学学报, 26(5): 759-790

    Google Scholar

    Lai S C, Zhu Y, 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate felsic magmatism in the western margin of the Yangtze Block, South China[J]. Journal of Geomechanics, 26 (5): 759-790.

    Google Scholar

    [23] 吕亮, 王思德, 俎波, 等, 2022. 老挝稀土资源特征及勘查开发前景[J]. 地质科技通报, 41(3): 20-31

    Google Scholar

    Lü L, Wang S D, Zu B, et al. , 2022. Rare earth resources in Laos: Characteristics and the prospects for exploration and development[J]. Bulletin of Geological Science and Technology, 41(3): 20-31.

    Google Scholar

    [24] 莫宣学, 路凤香, 沈上越, 等. 1993. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1 − 267.

    Google Scholar

    Mo X X, Lu F X, Shen S Y, et al., 1993. Volcanic rocks and metallogeny of the Sanjiang region, southwestern China [M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [25] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135-148

    Google Scholar

    Mo X X, Zhao Z D, Deng J F, et al. , 2003. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers, 10(3): 135-148.

    Google Scholar

    [26] 毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产—国际动向与思考[J]. 矿床地质, 38(4): 689-698

    Google Scholar

    Mao J W, Yang Z X, Xie G Q, et al. , 2019. Critical minerals: International trends and thinking[J]. Mineral Deposits, 38(4): 689-698.

    Google Scholar

    [27] Marsh J S. 1991. REE and fractionation and Ce anomalies in weathering Karoo dolerite[J]. Chemical Geology, 90: 189 − 194.

    Google Scholar

    [28] Maulana A, Yonezu K, Watanabe K, 2014. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia[J]. Journal of Earth Science, 25: 460-472. doi: 10.1007/s12583-014-0449-z

    CrossRef Google Scholar

    [29] Maulana A, Sanematsu K, Sakakibara M, 2016. An Overview on the Possibility of Scandium and REE Occurrence in Sulawesi, Indonesia[J]. Indonesian Journal on Geoscience, 3(2): 139-147.

    Google Scholar

    [30] 牛贺才, 单强, 陈小明, 等, 2002. 攀西裂谷带轻稀土矿床与地幔过程的关系[J]. 中国科学(D辑), 32(增刊): 33 − 40.

    Google Scholar

    Niu H C, Shan Q, Chen X M, et al., 2003. Relationship between light rare earth deposits and mantle processes in Panxi rift, China [J]. Science in China (Series D), 46 (Sl): 41 − 49. (in Chinese)

    Google Scholar

    [31] 彭琳琳, 陈斌锋, 邹新勇, 等, 2021. 离子型稀土矿稀土配分特征及类型划分新方案[J]. 中国稀土学报, 39(4), 624 − 632

    Google Scholar

    Peng L L, Chen B F, Zou X Y, et al., 2021. Rare earth partitioning characteristics and new scheme for classification of ion-adsorption type rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 39(4), 624 − 632(in Chinese with English abstract).

    Google Scholar

    [32] 潘泽伟, 卢映祥, 罗建宏, 等, 2021. 滇西陇川营盘山离子吸附型稀土矿稀土元素分布特征[J]. 地质与勘探, 57(4): 784-795

    Google Scholar

    Pan Z W, Lu Y X, Luo J H, et al. , 2021. REE distribution characteristics of the Yingpanshan ion adsorption type rare-earth deposit in the Longchuan area of Western Yunnan[J]. Geology and Exploration, 57(4): 784-795.

    Google Scholar

    [33] 潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151-175

    Google Scholar

    Pan G T, Wang L Q, Yin F G, et al. , 2022. Researches on geological-tectonic evolution of Tibetan plateau: a review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2): 151-175.

    Google Scholar

    [34] 秦建华, 刘才泽, 廖震文, 等, 2017. 中国西南地区重要矿产成矿规律[M]. 武汉: 中国地质大学出版社, 69

    Google Scholar

    Qin J H, Liu C Z, Liao Z W, et al., 2017. Ore-forming regularity of important mineral in Southwest China[M]. Wuhan: China University of Geosciences Press, 69(in Chinese).

    Google Scholar

    [35] Sun S S, McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]. Geological Society, London, Special Publication, 42: 313 − 345.

    Google Scholar

    [36] Sanematsu K, Murakami H, Watanabe Y, et al. , 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos[J]. Bulletin of the Geological Survey of Japan, 60(11/12): 527-558.

    Google Scholar

    [37] Sanematsu K, Moriyama T, Sotouky L et al. , 2011. Mobility of rare warth elements in basalt-derived laterite at the Bolaven Plateau, Southern Laos[J]. . Resource Geology, 61(2): 140-158. doi: 10.1111/j.1751-3928.2011.00155.x

    CrossRef Google Scholar

    [38] Sanematsu K, Kon Y, Imai A, et al. , 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. . Mineralium Deposita, 48: 437-451. doi: 10.1007/s00126-011-0380-5

    CrossRef Google Scholar

    [39] Sanematsu K, Kon Y, Imai A, 2015. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand[J]. . Journal of Asian Earth Sciences, 111: 14-30 doi: 10.1016/j.jseaes.2015.05.018

    CrossRef Google Scholar

    [40] Su N, Yang S, Guo Y, et al, 2017. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochem Geophys, 18: 935-955. doi: 10.1002/2016GC006659

    CrossRef Google Scholar

    [41] Tian J, Tang X K, Yin J Q, et al. , 2013. Process optimization on leaching of a lean weathered crust elution deposited rare earth ores[J]. . International Journal of Mineral Processing, 119: 83-88. doi: 10.1016/j.minpro.2013.01.004

    CrossRef Google Scholar

    [42] 吴澄宇, 黄典豪, 1990. 南岭花岗岩类起源与稀土元素的分馏[J]. 岩石矿物学杂志, 2: 106-116

    Google Scholar

    Wu C Y, Huang D H, 1990. Differentiation of rare earth elements and origin of granitic rocks, Nanling mountain area[J]. Acta Petrologica et Mineralogica, 2: 106-116.

    Google Scholar

    [43] 吴澄宇, 白鸽, 黄典豪, 等, 1992. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报, 25: 43-58

    Google Scholar

    Wu C Y, Bai G, Huang D H, et al. , 1992. Characteristics and significance of HREE-rich granitoids of the Nanling mountain area[J]. Bulletin of the Chinese Academy of Geological Sciences, 25: 43-58.

    Google Scholar

    [44] 汪正江, 王剑, 杨平, 等, 2011. 上扬子克拉通内新元古代A型花岗岩的发现及其地质意义[J]. 沉积与特提斯地质, 32(2): 1-11

    Google Scholar

    Wang Z J, Wang J, Yang P, et al. , 2011. The discovery and geological implications of the Neoproterozoic A-type granites in the upper Yangtze craton[J]. Sedimentary Geology and Tethyan Geology, 32(2): 1-11.

    Google Scholar

    [45] 王登红, 赵芝, 于扬, 等, 2013a. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 32(5): 796-802

    Google Scholar

    Wang D H, Zhao Z, Yu Y, et al. , 2013a. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 32(5): 796-802.

    Google Scholar

    [46] 王登红, 王瑞江, 李建康, 等, 2013b. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361-370

    Google Scholar

    Wang D H, Wang R J, Li J K et al. , 2013b. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 4(2): 361-370.

    Google Scholar

    [47] 王登红, 赵芝, 于扬, 等, 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展[J]. 地球学报, 38(3): 317-325

    Google Scholar

    Wang D H, Zhao Z, Yu Y, et al. , 2017. A Review of the achievements in the survey and study of ion-absorption type REE deposits in China[J]. Acta Geoscientica Sinica, 38(3): 317-325.

    Google Scholar

    [48] 王登红, 2019a. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209

    Google Scholar

    Wang D H, 2019a. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189-1209.

    Google Scholar

    [49] 王登红, 刘善宝, 于扬, 等, 2019b. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 93(6): 1444 − 1453

    Google Scholar

    Wang D H, Liu S B, Yu Y, et al., 2019b. Exploration progress and development suggestion for the large-scale mining base of strategic critical mineral resources in western Sichuan [J]. Acta Geologica Sinica. 93(6): 1444 − 1453(in Chinese with English abstract).

    Google Scholar

    [50] 王学求, 周建, 迟清华, 等, 2020. 中国稀土元素地球化学背景与远景区优选[J]. 地球学报, 41(6): 747-758 doi: 10.3975/cagsb.2020.102802

    CrossRef Google Scholar

    Wang X Q, Zhou J, Chi Q H, et al. , 2020. Geochemical background and distribution of rare earth elements in China: implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 747-758. doi: 10.3975/cagsb.2020.102802

    CrossRef Google Scholar

    [51] 王学求, 周建, 张必敏, 等, 2022. 云南红河州超大规模离子吸附型稀土矿的发现及其意义[J]. 地球学报, 43(4): 509-519

    Google Scholar

    Wang X Q, Zhou J, Zhang B M, et al. , 2022. Finding and implication of an undiscovered giant deposit of ion-adsorption rare earth elements in Honghe, South Yunnan, China[J]. Acta Geoscientica Sinica, 43(4): 509-519.

    Google Scholar

    [52] 王长兵, 倪光清, 瞿亮, 等, 2021. 花岗岩风化壳中Ce地球化学特征及其找矿意义[J]. 矿床地质, 40(5): 1013-1028

    Google Scholar

    Wang C B, Ni G Q, Qu L, et al. , 2021. Ce geochemical characteristics of granite weathering crust and its prospecting significance[J]. Mineral Deposits, 40(5): 1013-1028.

    Google Scholar

    [53] 伍普球, 周靖雯, 黄健, 等, 2022. 离子吸附型稀土矿床中稀土的富集–分异特征: 铁氧化物–黏土矿物复合体的约束[J]. 地球化学, 51(3): 271 − 282.

    Google Scholar

    Wu P Q, Zhou J W, Huang J, et al., 2022. Enrichment and fractionation of rare earth elements in ion-adsorption rare earth elements deposits: Constraints of iron oxide-clay mineral composites[J]. Geochimica, 51(3): 271 − 2828(in Chinese with English abstract).

    Google Scholar

    [54] Wang Y J, Fan W M, Zhang G W, et al. , 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Res, 23: 1273-1305. doi: 10.1016/j.gr.2012.02.019

    CrossRef Google Scholar

    [55] 肖剑, 王勇, 洪应龙, 等, 2009. 西华山钨矿花岗岩地球化学特征及与钨成矿的关系[J]. 华东理工大学学报(自然科学版), 32(1): 22-31

    Google Scholar

    Xiao J, Wang Y, Hong Y L, et al. , 2009. Geochemistry characteristics of Xihuashan tungsten granite and its relationship to tungsten metallogenesis[J]. Journal of east China institute of technology, 32(1): 22-31.

    Google Scholar

    [56] Xie Y L, Verplanck P, Hou Z Q, et al. , 2019. Rare earth element deposits in China: A review and some new understanding[J]. Society of Economic Geologists Special Publication, 22: 509-552.

    Google Scholar

    [57] 谢玉玲, 夏加明, 崔凯, 等, 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程[J]. 科学通报, 65(33): 3794 − 3808

    Google Scholar

    Xie Y L, Xia J M, Cui K, et al., 2020. Rare earth elements deposits in China: spatiotemporal distribution and ore-forming processes [J]. Chinese Science Bulletin, 65(33): 3794 − 3808(in Chinese with English abstract).

    Google Scholar

    [58] 夏小洪, 刘图强, 尹川, 等, 2022. 四川攀枝花—西昌地区离子吸附型(中-重)稀土矿床的首次发现及其重要意义[J]. 地质论评, 68(4): 1540-1543

    Google Scholar

    Xia X H, Liu T Q, Yin C, et al. , 2022. First discovery of ion adsorption-type (medium—heavy) REE deposit in the Panzhihua-Xichang area, Sichuan province, and its significance[J]. Geological Review, 68(4): 1540-1543.

    Google Scholar

    [59] 杨瑞瑛, 黄忠祥, 李继亮, 1988. 攀西地区花岗岩类的微量元素地球化学[J]. 中国科学(B辑), 2: 183-192

    Google Scholar

    Yang R Y, Huang Z X, Li J L, 1988. Trace element geochemistry of granitoid in Panxi area[J]. Science in China, Ser. B, 2: 183-192.

    Google Scholar

    [60] 尹福光, 王冬兵, 孙志明, 等. 2012. 哥伦比亚超大陆在扬子陆块西缘的探秘[J]. 沉积与特提斯地质, 32(3): 31 − 40

    Google Scholar

    Yin F G, Wang D B, Sun Z M, et al., 2012. Columbia supercontinent: new insights from the western margin of the Yangtze landmass[J]. Sedimentary Geology and Tethyan Geology, 32(3): 31 − 40(in Chinese with English abstract).

    Google Scholar

    [61] 鄢俊彪, 吴开兴, 刘辉, 等, 2018. 离子型稀土矿石颗粒粒度分布型式及其成因研究——以江西赣县大埠稀土矿床为例[J]. 中国稀土学报, 36(3), 372 − 384

    Google Scholar

    Yan J B, Wu K X, Liu H, et al., 2018. Patterns of particle size distribution and genesis of ion-adsorption REE ore-exemplified by Dabu REE ore deposit, Ganxian county, Southern Jiangxi province[J]. Journal of the Chinese Society of Rare earths, 36(3), 372 − 384(in Chinese with English abstract).

    Google Scholar

    [62] 燕利军, 陈永清, 邓志祥, 等, 2020. 云南盈江地区风化壳型稀土矿特征及找矿方向[J]. 地质与勘探, 56(2): 288-301 doi: 10.12134/j.dzykt.2020.02.005

    CrossRef Google Scholar

    Yan L J, Chen Y Q, Deng Z X, et al. , 2020. Features of weathered crust rare earth ores and prospecting direction in the Yingjiang area, Yunnan province[J]. Geology and Exploration, 56(2): 288-301. doi: 10.12134/j.dzykt.2020.02.005

    CrossRef Google Scholar

    [63] 尹淑萍, 谢玉玲, 梁亚运, 2021. 碳酸岩岩浆演化过程中REE富集与分异的研究进展及碳酸岩中的矿物学分带[J]. 矿床地质, 40(5): 949-962

    Google Scholar

    Yin S P, Xie Y L, Liang Y Y, 2021. A review of REE enrichment and fractionation mechanism during magma evolution of ore-forming carbonatite and significance of mineral zonation in carbonatite[J]. Mineral Deposits, 40(5): 949-962.

    Google Scholar

    [64] Yang Y H, Wu F Y, Li Q L, et al. , 2019. In situ U-Th-Pb dating and Sr-Nd isotope analysis of Bastnsite by LA-(MC)-ICP-MS[J]. Geostandards and Geoanalytical Research, 43: 543-565. doi: 10.1111/ggr.12297

    CrossRef Google Scholar

    [65] 赵芝, 王登红, 陈振宇, 等, 2014. 南岭东段与稀土矿有关岩浆岩的成矿专属性特征[J]. 大地构造与成矿学, 38(2): 255-263

    Google Scholar

    Zhao Z, Wang D H, Chen Z Y, et al. , 2014. Metallogenic specialization of rare earth mineralized igneous rocks in the eastern Nanling region[J]. Geotectonica et Metallogenia, 38(2): 255-263.

    Google Scholar

    [66] 赵芝, 王登红, 邹新勇, 2022. “寨背式”离子吸附型稀土矿床多类型稀土矿化及其成因[J]. 岩石学报, 2022, 38(2): 356 − 370

    Google Scholar

    Zhao Z, Wang D H, Zou X Y. 2022. The genesis and diversity of ion adsorption REE mineralization in the Zhaibei deposit, Jiangxi province, South China[J]. Acta Petrologica Sinica, 38(2): 356 − 370(in Chinese with English abstract).

    Google Scholar

    [67] 朱云波, 余斌, 王治兵, 等, 2015. 四川德昌茨达“8.24”群发性滑坡型泥石流质地形条件[J]. 山地学报, 33(1): 108-115

    Google Scholar

    Zhu Y B, Yu B, Wang Z B, et al. , 2015. Topographic research of group-occurring landslide-induced debris flow in Dechang, Sichuan[J]. Mountain Research, 33(1): 108-115.

    Google Scholar

    [68] 钟祥熙, 2016. 不同风化程度离子吸附型稀土矿赋存特征及浸出规律研究[D]. 赣州: 江西理工大学, 4 − 5

    Google Scholar

    Zhong X X, 2016. Occurrence characteristics and leaching rules of different weathering rare earth ores[D]. Ganzhou: Jiangxi University of Science and Technology, 4 − 5(in Chinese with English abstract).

    Google Scholar

    [69] 张民, 李杨, 何显川, 等, 2018. 滇西临沧花岗岩中段离子吸附型稀土矿成矿特征研究[J]. 沉积与特提斯地质, 38(4): 37-47

    Google Scholar

    Zhang M, Li Y, He X C, et al. , 2018. Mineralization of the ion adsorption-type REE deposits in the central part of the Lincang granites in western Yunnan[J]. Sedimentary Geology and Tethyan Geology, 38(4): 37-47.

    Google Scholar

    [70] 张彬, 马国桃, 高儒东, 等, 2018. 滇西腾冲-梁河地区土官寨离子吸附型稀土矿床形成条件及找矿预测[J]. 地球科学, 43(8): 2628-2637

    Google Scholar

    Zhang B, Ma G T, Gao R D, et al. , 2018. Formation conditions and prospecting prediction of Tuguanzhai ion-adsorption type REE deposit in Tengchong-Lianghe area[J]. Earth Science, 43(8): 2628-2637.

    Google Scholar

    [71] 张彬, 祝向平, 张斌辉, 等, 2019. 云南腾冲土官寨离子吸附型稀土矿床地球化学特征[J]. 中国稀土学报, 37(4): 491 − 506

    Google Scholar

    Zhang B, Zhu X P, Zhang B H, et al., 2019. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan[J]. Journal of the Chinese society of rare earths, 37(4): 491 − 506(in Chinese with English abstract).

    Google Scholar

    [72] 张民, 何显川, 谭伟, 等, 2022. 云南临沧花岗岩离子吸附型稀土矿床地球化学特征及其成因讨论[J]. 中国地质, 49(1): 201-214

    Google Scholar

    Zhang M, He X C, Tan W, et al. , 2022. Geochemical characteristics and genesis of ion-adsorption type REE deposit in the Lincang granite, Yunnan province[J]. Geology In China, 49(1): 201-214.

    Google Scholar

    [73] 赵延朋, 卢见昆, 杨人毅, 等, 2019. 老挝XK离子吸附型稀土矿床斑状二长花岗岩地球化学特征及地质意义[J]. 地球学报, 33(2): 213-219

    Google Scholar

    Zhao Y P, Lu J K, Yang R Y, et al. , 2019. Geochemical characteristics and geological significance of porphyritic monzonitic granites from XK ion-adsorbed rare earth deposits in Laos[J]. Mineral Resources and Geology, 33(2): 213-219.

    Google Scholar

    [74] 曾凯, 李郎田, 祝向平, 等, 2019. 滇西勐往-曼卖地区离子吸附型稀土矿成矿规律与找矿潜力[J]. 地质与勘探, 55(1): 19-29 doi: 10.12134/j.dzykt.2019.01.002

    CrossRef Google Scholar

    Zeng K, Li L T, Zhu X P, et al. , 2019. The metallogenic regularity and prospecting potential of rare-earth deposits of ion-adsorbent type in the Mengwang-Manmai area, western Yunnan[J]. Geology and Exploration, 55(1): 19-29. doi: 10.12134/j.dzykt.2019.01.002

    CrossRef Google Scholar

    [75] 周美夫, 李欣禧, 王振朝, 等, 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报, 65(33): 3809-3824 doi: 10.1360/TB-2020-0350

    CrossRef Google Scholar

    Zhou M F, Li X X, Wang Z C, et al. , 2020. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 65(33): 3809-3824. doi: 10.1360/TB-2020-0350

    CrossRef Google Scholar

    [76] Zhao X F, Zhou M F, 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J]. Mineralium Deposita, 46: 731-747. doi: 10.1007/s00126-011-0342-y

    CrossRef Google Scholar

    [77] 邹佳作, 聂飞, 郭金承, 2022. 四川冕宁—德昌地区发现离子吸附型稀土矿点[J]. 中国地质, 50(2): 648-649

    Google Scholar

    Zou J Z, Nie F, Guo J C, 2022. New discovery of ion-absorption type REE mineral occurrence in the Mianning-Dechang area, Sichuan Province[J]. Geology in China, 50(2): 648-649.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1720) PDF downloads(410) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint