2024 Vol. 44, No. 2
Article Contents

LENG Qiufeng, WU Songyang, LIU Shusheng, NIE Fei, ZHANG Bin. 2024. Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance. Sedimentary Geology and Tethyan Geology, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002
Citation: LENG Qiufeng, WU Songyang, LIU Shusheng, NIE Fei, ZHANG Bin. 2024. Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance. Sedimentary Geology and Tethyan Geology, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002

Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance

More Information
  • The Shangalon copper-gold deposit is located in the northern segment of the Wunto-Popa magmatic arc in Myanmar. The research on this deposit is limited, and there is a lack of high-precision isotopic geochronological data regarding its ore-forming geological background and deposit genesis. In this study, five molybdenite samples from typical ores were selected to determine the mineralization age using the Re-Os isochron dating method. The obtained model ages range from 38.3±0.6 to 38.5±0.5 million years ago (Ma), with a weighted average age of 38.4±0.2 Ma. The corresponding isochron age is 38.0±1.6 Ma (MSWD=0.17). Both ages are in good agreement within the error range, indicating that the mineralization timing of the Shangalon copper-gold deposit is in the Eocene epoch. This age data corresponds well with the zircon U-Pb ages of 38 to 40 million years for the mineralized syenogranite and granodiorite in the mining area, suggesting a close relationship between the Shangalon Cu-Au-Mo mineralization and Eocene syenogranite-granodiorite intrusions, which are products of Eocene magmatic activity. The Re contents of molybdenite samples from the Shangalon copper-gold deposit range from 82.4 to 111.2 μg·g1, with an average value of 98.88 μg·g1, indicating a mixed source from the crust and mantle for the mineralizing fluids. Based on a comprehensive analysis of the regional metallogenic dynamics, it is suggested that the Eocene copper-gold mineralization in the Shangalon region possibly formed as a result of the fragmentation and faulting of the Neo-Tethys oceanic plate, triggered by the collision between the Indian and Eurasian continents, leading to upwelling of the asthenosphere and partial melting of the lower crust.

  • 加载中
  • [1] Barber A J, Khin Zaw, Crow M J. et al., 2016. Myanmar: Geology, Resources and Tectonics[M]. The Geological Society, London.

    Google Scholar

    [2] Barley M E., Pickard A L, Zaw K, et al., 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India − Eurasia collision in Myanmar[J]. Tectonics, 22(3): 1 − 11

    Google Scholar

    [3] Barley M E, Zaw K, 2009. SHRIMP U − Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia[C]. EGU Gen. Assembly Conf. Abstracts , 11: 3842.

    Google Scholar

    [4] Bertrand G, Rangin C, Maluski H, et al., 2001. Diachronous cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): the trace of the northward migration of the Indian syntaxis[J]. Journal of Asian Earth Sciences, 19: 649 − 659.

    Google Scholar

    [5] Bertrand G, Rangin C, 2003. Tectonics of the western margin of the Shan plateau (Central Myanmar), implications for the India–Indochina oblique convergence since Oligocene[J]. Journal of Asian Earth Sciences, 21: 1139-1157. doi: 10.1016/S1367-9120(02)00183-9

    CrossRef Google Scholar

    [6] Berzina A N, Sotnikov V I, Economou-Eliopoulos, M. et al. , 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Reviews, 26(1-2): 91-113. doi: 10.1016/j.oregeorev.2004.12.002

    CrossRef Google Scholar

    [7] Bohlkea J K, Laeter J R , Bievre P D, et al. , 2001. Isotopic compositions of the elements[J]. Journal of Physical and Chemical Reference Data, 34(1): 57-67.

    Google Scholar

    [8] Chapman J B, Kapp P, 2017. Tibetan Magmatism Database[J]. Geochemistry, Geophysics, Geosystems, 18(11): 4229–4234.

    Google Scholar

    [9] Christophe V, Socquet A, Rangin C, et al., 2003. Present − day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research, 108: 1 − 10.

    Google Scholar

    [10] Ding L, Maksatbek S, Cai F L, et al., 2017. Processes of initial collision and suturing between India and Asia[J]. Science China − Earth Sciences. 60 (4): 635–651.

    Google Scholar

    [11] Du A D, Wu S Q, Sun D Z, et al. , 2004. Preparat ion and cert if icat ion of Re-Os dating reference materials: Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x

    CrossRef Google Scholar

    [12] Foster J G, Lambert D D, Frick L P, 1996. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 382: 703-706. doi: 10.1038/382703a0

    CrossRef Google Scholar

    [13] Holt W E, Ni J F, Wallace T C, et al., 1991. The active tectonics of the eastern Himalayan Syntaxis and surrounding regions[J]. Geophysical Research Letters, 96(14): 595 − 632.

    Google Scholar

    [14] Huang X, Qi L, Gao J, et al., 2021. Re − Os dating of molybdenite via improved alkaline fusion[J]. Journal of Analytical Atomic Spectrometry 36: 64 − 69.

    Google Scholar

    [15] Htut T H, Qin K Z, Li G M, et al., 2017. Transition from High Sulfidation Epithermal Au to Porphyry Cu system and associated magmatism, Shangalon − Maharsan area, north − central Wuntho − Popa Arc, Myanmar[J]. SEG 2017 Conf: 222.

    Google Scholar

    [16] Htut T H, Qin K Z, Li G M, et al. , 2020. Eocene arc magmatism and related Cu-Au (Mo) mineralization in the Shangalon-Kyungalon district, Wuntho-Popa Arc, northern Myanmar[J]. Ore Geology Reviews, 125: 1-16.

    Google Scholar

    [17] Gardiner N J, Robb L J and Searle M P, 2014. The metallogenic provinces of Myanmar[J]. Applied Earth Science, 123: 25-38. doi: 10.1179/1743275814Y.0000000049

    CrossRef Google Scholar

    [18] Gardiner, N. J. , Searle, M. P. , Robb, L. J. , et al. , 2015. Neo-Tethyan magmatism and metallogeny in Myanmae-an Andean analogue[J]. Journal of Asian Earth Sciences, 106: 197-215. doi: 10.1016/j.jseaes.2015.03.015

    CrossRef Google Scholar

    [19] Gardiner N J, Robb L J, Morley C K, et al., 2016. The tectonic and metallogenic framework of Myanmar: a Tethyan mineral system[J]. Ore Geology Reviews. 79: 26 − 45.

    Google Scholar

    [20] Gardiner N J, Hawkesworth C J, Robb L J, et al., 2017. Contrasting granite metallogeny through the Zircon record: a case study from Myanmar[J]. Scientific Reports. 7(1): 1 − 9

    Google Scholar

    [21] Gardiner, N. J. , Searle, M. P. , Morley, C. K. , et al. , 2018. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications[J]. Gondwana Research, 62: 27-60 doi: 10.1016/j.gr.2018.02.008

    CrossRef Google Scholar

    [22] Goossens P, 1978. The metallogenic provinces of Burma: their definitions, geologic relationships and extension into China, India and Thailand[C]. Third Regional Conference on Geology and Mineral Resources of Southeast Asia.

    Google Scholar

    [23] Jiang Z Q, Wang Q, Li Z X, et al., 2012. Late Cretaceous (ca. 90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): slab melting and implications for Cu − Au mineralization[J]. Journal of Asian Earth Sciences. 53: 67 − 81.

    Google Scholar

    [24] Lang X H, Tang J X, Li Z J, et al., 2014. U − Pb and Re − Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences. 79: 608–622.

    Google Scholar

    [25] Lee, H. Y. , Chung, S. L. , Yang, H. M. , 2016. Late Cenozoic volcanism in central Myanmar: geochemical characteristics and geodynamic significance[J]. Lithos, 245: 174-190. doi: 10.1016/j.lithos.2015.09.018

    CrossRef Google Scholar

    [26] Leng, Q. F. , Chen, Y. C. , Tang, J. X. , 2015. Re-Os Dating of Molybdenite from the Lakange Porphyry Cu-Mo Deposit in Tibet and its Geological Significance[J]. Geology in China, 42(2): 570-584 (in Chinese with English abstract).

    Google Scholar

    [27] Li, J. X. , Zhang, L. Y. , Fan, W. M. , 2018. Mesozoic-Cenozoic tectonic evolution and metallogeny in Myanmar: Evidence from zircon/cassiterite U-Pb and molybdenite Re–Os geochronology[J]. Ore Geology Reviews, 102: 829-845. doi: 10.1016/j.oregeorev.2018.10.009

    CrossRef Google Scholar

    [28] Lin T H, Chung S L, Kumar A, et al., 2013. Linking a prolonged Neo − Tethyan magmatic arc in South Asia: Zircon U − Pb and Hf isotopic constraints from the Lohit Batholith, NE India[J]. Terra Nova 25 (6): 453 − 458.

    Google Scholar

    [29] Ludwig K R, 2009. Isoplot/Ex, version 2.0: a geochronogical toolkit for Microsoft Excel. Geochronology Center

    Google Scholar

    [30] Mao J W, Zhang Z C, Zhang Z H, et al., 1999. Re − Os isotopic dating of molybdenites in the Xiaoliugou W ( Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 63(11 − 12): 1815 − 1818.

    Google Scholar

    [31] Mao J W, Du A D, Seltmann R, et al., 2003. Re − Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia[J]. Mineralium Deposita, 38: 251 − 257.

    Google Scholar

    [32] Martin C E, Carlson R W, Shirey S B, et al., 1994. Os isotopic variation in basalts from Haleakala Volcano, Maui, Hawaii: a record of mamgmatic processes in oceanic mantle and crust[J]. Earth and Planetary Science Letters, 128: 287 − 301.

    Google Scholar

    [33] Maury R C, Pubellier M, Rangin C, et al., 2004. Quaternary calc − alkaline and alkaline volcanism in an hyper − oblique convergence setting, central Myanmar and western Yunnan[J]. Bulletin De La Societe Geologique De France 175 (5): 461 − 472.

    Google Scholar

    [34] Meng F Y, Zhao Z, Zhu D C, et al., 2014. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: products of back-arc extension of Neo-Tethyan Ocean? [J]. Gondwana Research. 26 (2): 505–520.

    Google Scholar

    [35] Metcalfe I, 2013. Gonawana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66, 1 − 33.

    Google Scholar

    [36] Mitchell, A. H. G. , 1993. Cretacelus-Cenozoic tectonic events in the western Myanmar(Burma) Assam Region[J]. Journal of the Geological Society, 150: 1089-1102. doi: 10.1144/gsjgs.150.6.1089

    CrossRef Google Scholar

    [37] Mitchell, A. H. G. , Myint, W. , Lynn, K. , et al. , 2011. Geology of the high sulfidation copper deposits, Monywa mine, Myanmar[J]. Resource Geology, 61(1): 1-29. doi: 10.1111/j.1751-3928.2010.00145.x

    CrossRef Google Scholar

    [38] Mitchell A. H. G. , Chung S. L. , Oo T. , et al. , 2012. Zircon U-Pb ages in Myanmar: Magmaticmetamorphic events and the closure of a neo-Tethys ocean? [J]. Journal of Asian Earth Sciences, 56: 1-23. doi: 10.1016/j.jseaes.2012.04.019

    CrossRef Google Scholar

    [39] Mitchell A H G., 2018. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar[M]. Elsevier, 1 − 509.

    Google Scholar

    [40] Morley, C. K. , 2012. Late Cretacelus-Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 115: 37-75. doi: 10.1016/j.earscirev.2012.08.002

    CrossRef Google Scholar

    [41] Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 20: 551 − 566.

    Google Scholar

    [42] Myint, A. Z. , Zaw, K. , Swe, Y. M. , et al. , 2017. Geochemistry and geochronology of granites hosting the Mawchi Sn-W deposit, Myanmar: implications for tectonic setting and emplacement[J]. Geological Society of London, 48(1): 385-400. doi: 10.1144/M48.17

    CrossRef Google Scholar

    [43] Myint, A. Z. , Yonezu, K. , Boyce, A. J. , et al. , 2018. Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: implications for timing of mineralization and ore genesis[J]. Ore Geology Reviews, 95: 663-679. doi: 10.1016/j.oregeorev.2018.03.014

    CrossRef Google Scholar

    [44] Searle M P, Noble S R, Cottle J M, et al., 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U − Th − Pb dating of metamorphic and magmatic rocks[J]. Tectonics, 26 (3): 1 − 24

    Google Scholar

    [45] Searle, M. P. , Robb, L. J. , Gardiner, N. J. , 2016. Tectonic processes and metallogeny along the Tethyan mountaion ranges of the Middle East and South Asia (Oman, Himalaya, Karakoram, Tibet, Myanmar, Thailand, Malaysia) [J]. Society of Economic Geologist, Special Publication, 19: 301-327.

    Google Scholar

    [46] Searle, M. P. , Morley, C. K. , Waters, D. J. , et al. , 2017. Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar) [J]. Geological Society of London, 48 (1): 261–293. doi: 10.1144/M48.12

    CrossRef Google Scholar

    [47] Shen, J. J. , Papanastassiou, D. A. , and Wasserburg, G. J. , 1996. Precise Re-Os determinations and systematics of iron meteorites[J]. Geochimica et Cosmochimica Acta, 60: 2887-2900. doi: 10.1016/0016-7037(96)00120-2

    CrossRef Google Scholar

    [48] Smoliar, M. I. , Walker, R. J. and Morgan, J. W. , 1996. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites[J]. Science, 271: 1099-1102. doi: 10.1126/science.271.5252.1099

    CrossRef Google Scholar

    [49] Suzuki, K. , Shimizu, H. , Masuda, A. , 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os syatem for molybdenite and cooling history of molybdenum ore deposits[J]. Geochimica et Cosmochimica Acta, 60(16): 3151-3159. doi: 10.1016/0016-7037(96)00164-0

    CrossRef Google Scholar

    [50] Stein H J, Markey R J , Morgan J W, et al., 2001. The remarkable Re − Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 13(6): 479 − 486.

    Google Scholar

    [51] Wang J G, Wu F Y, Tan X C, et al., 2014. Magmatic evolution of the Western Myanmar Arc documented by U − Pb and Hf isotopes in detrital zircon[J]. Tectonophysics, 612–613: 97–105.

    Google Scholar

    [52] Wen, D. R. , Liu, D. Y. , Chung, S. L. , et al. , 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 252(3–4): 191–201. doi: 10.1016/j.chemgeo.2008.03.003

    CrossRef Google Scholar

    [53] Wieser, M. E. , 2006. Atomic weights of the elements 2005[J]. Pure and Applied Chemistry, 78(11): 2051-2066. doi: 10.1351/pac200678112051

    CrossRef Google Scholar

    [54] Wu, F. Y. , Ji, W. Q. , Wang, J. G. , et al. , 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 314 (2): 548–579. doi: 10.2475/02.2014.04

    CrossRef Google Scholar

    [55] Zaw, K. , 1990. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated W-Sn mineralization and their tectonic setting[J]. Journal of Southeast Asian Earth Sciences, 4(4): 293-335. doi: 10.1016/0743-9547(90)90004-W

    CrossRef Google Scholar

    [56] Zaw, K. , Meffre, S. , Lai, C. K. , et al. , 2014. Tectonics and metallogeny of mainland Southeast Asia-a review and contribution[J]. Gondwana Research, 26(1): 5-30. doi: 10.1016/j.gr.2013.10.010

    CrossRef Google Scholar

    [57] Zaw, K. , 2017. Overview of mineralization styles and tectonic-metallogenic setting in Myanmar[J]. Geological Society of London, 48(1): 531-556. doi: 10.1144/M48.24

    CrossRef Google Scholar

    [58] Zhang, P. , Mei, L. F. , Hu, X. L. , et al. , 2017. Structures, uplift, and magmatism of the Western Myanmar Arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[J]. Gondwana Research, 52: 18–38. doi: 10.1016/j.gr.2017.09.002

    CrossRef Google Scholar

    [59] 蒋少涌, 杨竞红, 赵葵东, 等. 2000. 金属矿床Re − Os同位素示踪与定年研究[J]. 南京大学学报(自然科学版), 30(6): 669 − 677

    Google Scholar

    Jiang S Y, Yang J H, Zhao K D, et al., 2000. Re − Os isotope tracer and dating methods in ore deposits research[J]. Journal of Nanjing University (Natural Sciences), 30(6): 669 − 677(in Chinese with English abstract).

    Google Scholar

    [60] 冷秋锋, 陈毓川, 唐菊兴, 等. 2015. 西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 中国地质, 42(2): 570 − 584.

    Google Scholar

    Leng Q F, Tang J X, Zheng W B, et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China[J]. Resource Geology, 66(2): 163 − 182 (in Chinese with English abstract).

    Google Scholar

    [61] 李超, 屈文俊, 杜安道, 等. 2012. 含有普通锇的辉钼矿Re − Os同位素定年研究[J]. 岩石学报, 28(2): 702 − 708

    Google Scholar

    Li C, Qu W J, Du A D, et al., 2012. Study on Re − Os isotope in molybdenite containing common Os[J]. Acta Petrologica Sinica, 28(2): 702 − 708 (in Chinese with English abstract).

    Google Scholar

    [62] 李光明, 张林奎, 吴建阳, 等. 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(1): 1 − 14

    Google Scholar

    Li G M, Zhang L K, Wu J Y, et al., 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China[J]. Sedimentary Geology and Tethyan Geology, 40(1): 1 − 14(in Chinese with English abstract).

    Google Scholar

    [63] 刘俊, 祝向平, 李文昌, 等. 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re − Os定年及地质意义[J]. 地质学报, 93(7): 1708 − 1719

    Google Scholar

    Liu J, Zhu X P, Li W C, et al., 2019. Molybdnite Re − Os dating of the Larong porphyry W − Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 93(7): 1708 − 1719 (in Chinese with English abstract).

    Google Scholar

    [64] 王登红, 陈郑辉, 陈毓川, 等. 2010. 我国重要矿产地成岩成矿年代学研究新数据[J]. 地质学报, 2010, 07: 1030 − 1040

    Google Scholar

    Wang D H, Chen Z H, Chen Y C, et al., 2010. New Data of the Rock − Forming and Ore − Forming Chronology for China's Important Mineral Resources Areas[J]. Acta Geologica Sinica, 7: 1030 − 1040 (in Chinese with English abstract).

    Google Scholar

    [65] 王宏, 林方成, 李兴振, 等. 2012. 缅甸中北部及邻区构造单元划分及新特提斯构造演化[J]. 中国地质, 39(4): 912 − 922

    Google Scholar

    Wang H, Lin F C, Li X Z, 2012. Tectonic unit division and Neo − Tethys tectonic evolution in north − central Myanmar and its adjacent areas[J]. China Geology, 39(4): 912 − 922 (in Chinese with English abstract).

    Google Scholar

    [66] 尹福光, 潘桂棠, 孙志明. 2021. 西南三江构造体系及演化、成因[J]. 沉积与特提斯地质, 40(2): 265 − 282

    Google Scholar

    Yin F G, Pan G T, Sun Z M, 2021. Genesis and evolution of the structural systems during the cenozoic in the Sanjiang orogenic belt, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 40(2): 265 − 282 (in Chinese with English abstract).

    Google Scholar

    [67] 张靖祎, 彭头平, 范蔚茗, 等. 2021. 缅甸密支那早白垩世钾玄质岩石成因及其大地构造意义[J]. 大地构造与成矿学, 45(3): 553 − 569

    Google Scholar

    Zhang J Y, Peng T P, Fan W M, 2021. Petrogenesis of the Early Cretaceous Shoshonitic Rocks in Myitkina of Myanmar and its Tectonic Implications[J]. Geotectonica et Metallogenia, 45(3): 553 − 569 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(360) PDF downloads(464) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint