2025 Vol. 45, No. 1
Article Contents

LUO Liming, YU Manlin, LI Qi, WU Zhoufan, HUANG Yongjian. 2025. Milankovitch cycle identification of Denglouku Formation in Songliao Basin and its paleoclimate significance. Sedimentary Geology and Tethyan Geology, 45(1): 112-119. doi: 10.19826/j.cnki.1009-3850.2023.08010
Citation: LUO Liming, YU Manlin, LI Qi, WU Zhoufan, HUANG Yongjian. 2025. Milankovitch cycle identification of Denglouku Formation in Songliao Basin and its paleoclimate significance. Sedimentary Geology and Tethyan Geology, 45(1): 112-119. doi: 10.19826/j.cnki.1009-3850.2023.08010

Milankovitch cycle identification of Denglouku Formation in Songliao Basin and its paleoclimate significance

More Information
  • Under the promotion of the Cretaceous continental scientific drilling project, the Songliao Basin has become one of the hotspots for the Cretaceous terrestrial paleoclimate research. Among these studies, the consistency and differences between the paleoclimate change of the Songliao Basin and coeval global climate change are currently the focus of attention. In this paper, the cores of the Denglouku Formation obtained from the continental scientific drilling of Well Songke-3 in the Songliao Basin were selected. The chemical weathering index Rb/Sr ratio was obtained through XRF scanning, and the time series analysis method was applied to study the cyclostratigraphy. The analysis results show that: (1) The variation in the chemical weathering index Rb/Sr ratio, as shown in the XRF scanning curve, indicates the process of the climate from humid to arid during the deposition of the Denglouku Formation. (2) The optimal deposition rate of the Denglouku Formation is about 14.43 cm/ka, which can be combined with the wavelength of the depth domain to identify the Milankovitch cycles preserved in the Denglouku Formation, including precession (20-19 ka), obliquity (45-39 ka), short eccentricity (130-100 ka), and long eccentricity (450-390 ka) signals of the climate cycle. (3) With the application of power decomposition analysis (PDA), it is shown that eccentricity and precession signals are dominant, while the obliquity signal is very weak in the Early Cretaceous Denglouku Formation. This is consistent with the global climate change record.

  • 加载中
  • [1] Arnaud F,Révillon S,Debret M,et al.,2012. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology[J]. Quaternary Science Reviews,51:81 − 92. doi: 10.1016/j.quascirev.2012.07.025

    CrossRef Google Scholar

    [2] Boulila S,Galbrun B,Kenneth G,et al.,2011. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth Science Reviews,109:94 − 112. doi: 10.1016/j.earscirev.2011.09.003

    CrossRef Google Scholar

    [3] Chen PJ,1987. Cretaceous paleogeography of China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,59:49 − 56.

    Google Scholar

    [4] Croudace I W,Rothwell R G,2015. Micro-XRF Studies of Sediment Cores:Applications of a non-destructive tool for the environmental sciences[M]. Netherlands:Springer:455.

    Google Scholar

    [5] Feng Z Q,Jia C Z,Xie X N,et al.,2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin,northeast China[J]. Basin Research,22(1):79 − 95.

    Google Scholar

    [6] Fernandez M,Björck S,Wohlfarth B,et al.,2013. Diatom assemblage changes in lacustrine sediments from Isla de los Estados,southernmost South America,in response to shifts in the southwesterly wind belt during the last deglaciation[J]. Journal of Paleolimnology,50(4):433 − 446. doi: 10.1007/s10933-013-9736-4

    CrossRef Google Scholar

    [7] Foster G L,Royer D L,Lunt D J,2017. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications,8:14845. doi: 10.1038/ncomms14845

    CrossRef Google Scholar

    [8] Hays J D,Imbrie J,Shackleton N J,1976. Variations in the Earth's orbit:Pacemaker of the Ice Ages[J]. Science,194:1121 − 1132.

    Google Scholar

    [9] Huang H,Gao Y,Ma C,et al.,2021. Organic carbon burial is paced by a ∼173-ka obliquity cycle in the middle to high latitudes[J]. Science advances, 7 (28):eabf9489.

    Google Scholar

    [10] Jin Z D,Zhang E L,2002. Paleoclimate implication of Rb/Sr ratios from lake sediments[J]. Science Technology and Engineering,2:20 − 22.

    Google Scholar

    [11] Kodama K P,Hinnov L A,2014. Rock magnetic cyclostratigraphy[M]. Sussex:John Wiley & Sons,Ltd.

    Google Scholar

    [12] Larson R L,1991. Latest pulse of Earth:Evidence for a mid Cretaceous superplume[J]. Geology,19(6):547 − 550. doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2

    CrossRef Google Scholar

    [13] Laskar J,Robutel P,Joutel F,et al.,2004. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy &. Astrophysics,428:261 − 285.

    Google Scholar

    [14] Laurin J,Meyers S R,Uličný D,et al.,2015. Axial obliquity control on the greenhouse carbon budget through middle- to high-latitude reservoirs[J]. Paleoceanography,30:133 − 149 . doi: 10.1002/2014PA002736

    CrossRef Google Scholar

    [15] Li M S,Hinnov L A,Kump L R,2019a. Acycle:Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences,127:12 − 22.

    Google Scholar

    [16] Li M S,Huang C J,Ogg J,et al.,2019b. Paleoclimate proxies for cyclostratigraphy:Comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews,189:125 − 146. doi: 10.1016/j.earscirev.2019.01.011

    CrossRef Google Scholar

    [17] Li M S,Huang C J,Hinnov L,et al.,2016. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology,44(8):623 − 626. doi: 10.1130/G37970.1

    CrossRef Google Scholar

    [18] Li X,Huang Y J,Zhang Z F,et al.,2022a. Chemical weathering characteristics of the Late Cretaceous Nenjiang Formation from the Songliao Basin (Northeastern China) reveal prominent Milankovitch band variations[J]. Palaeogeography,Palaeoclimatology,Palaeoecology ,601:111130.

    Google Scholar

    [19] Li X,Huang Y J,Zhang Z F,et al.,2022b. Orbitally forced chemical weathering in the Late Cretaceous northeastern China:Implications for paleoclimate change[J]. Global and Planetary Change,218:103982. doi: 10.1016/j.gloplacha.2022.103982.

    CrossRef Google Scholar

    [20] 马坤元,李若琛,龚一鸣,2016. 秦皇岛石门寨亮甲山奥陶系剖面化学地层和旋回地层研究[J]. 地学前缘,23(6):268−286.

    Google Scholar

    Ma K Y,Li R C,Gong Y M,2016. Chemostratigraphy and cyclostratigraphy of the Ordovician Liangjiashan section from Shimenzhai of Qinhuangdao in North China[J]. Earth Science Frontiers,23(6):268−286 (in Chinese with English abstract).

    Google Scholar

    [21] Muhs D R,Bettis E A,Been J,et al.,2001. Impact of climate and parentmaterial on chemical weathering in loess-derived soils of the Mississippi River valley[J]. Soil Science Society of America Journal,65(6):1761 − 1777. doi: 10.2136/sssaj2001.1761

    CrossRef Google Scholar

    [22] Pang J L ,Huang C C ,Zhang Z P ,2001. Rb,Sr elements and high resolution climatic records in the loess-paleosol profifile at Qishan,Shannxi[J]. Acta Sedimentologica Sinica,19:637 − 641.

    Google Scholar

    [23] 高航,王璞珺,高有峰,等,2023. 松辽盆地南部上、下白垩统界线研究:以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘,30(3):425 − 440.

    Google Scholar

    Gao H,Wang P J,Gao Y F,et al.,2023. The Upper-Lower Cretaceous boundary in the southern Songliao Basin:A case study of ICDP borehole SK-3[J]. Earth Science Frontiers,30(3):425 − 440 (in Chinese with English abstract).

    Google Scholar

    [24] 瞿雪姣,高有峰,林志成,等,2021. 松辽盆地及周缘地区侏罗系/白垩系界线区域对比特征探讨[J]. 地学前缘,28(4):299 − 315. doi: 10.13745/j.esf.sf.2020.7.3.

    CrossRef Google Scholar

    Qu X J,Gao Y F,Lin Z C,et al.,2021. Comparative characteristics of Jurassic/Cretaceous boundary in Songliao Basin and its surrounding areas[J]. Earth Science Frontiers,28(4):299 − 315 (in Chinese with English abstract). doi: 10.13745/j.esf.sf.2020.7.3.

    CrossRef Google Scholar

    [25] Thomson D J,1982. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE,70(9):1055 − 1096.

    Google Scholar

    [26] Unkel I,Fernandez M,Bjrck S,et al.,2010. Records of environmental changes during the Holocene from Isla de los Estados (54.4°S),southeastern Tierra del Fuego[J]. Global and Planetary Change,74(3):99 − 113.

    Google Scholar

    [27] Wang C S,Scott R W,Wan X Q,2013a. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews,126:275 − 299.

    Google Scholar

    [28] Wang C S,Feng Z Q,Zhang L M,et al.,2013b. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin,northeast China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,385:17 − 30.

    Google Scholar

    [29] Wang P J,Mattern F,Frank D,et al.,2016. Tectonics and cycle system of the Cretaceous Songliao Basin:An inverted active continental margin basin[J]. Earth-Science Reviews,159(1):82 − 102.

    Google Scholar

    [30] Wang P J,Chen S M,2015. Cretaceous volcanic reservoirs and their exploration in the Songliao Basin,northeast China[J]. AAPG Bulletin,99(3):499 − 523.

    Google Scholar

    [31] Wendler J E,Wendler I,Vogt C,et al.,2016. Link between cyclic eustatic sea-level change and continental weathering: Evidence for aquifer-eustasy in the Cretaceous[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,441:430 − 437.

    Google Scholar

    [32] Ruddiman W F,Earth's climate:Past and future[M]. 3rd ed. Macmillan:1−464.

    Google Scholar

    [33] Wu H C,Zhang S H,Hinnov L A,et al.,2014. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian–Lower Danian in Songliao Basin,northeastern China[J]. Earth and Planetary Science Letters,407:82 − 95. doi: 10.1016/j.jpgl.2014.09.038

    CrossRef Google Scholar

    [34] Wu H C,Zhang S H,Jiang G Q,et al.,2013. Astrochronology of the Early Turonian–Early Campanian terrestrial succession in the Songliao Basin,northeastern China and its implication for long−period behavior of the Solar System[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,385:55 − 70.

    Google Scholar

    [35] 席党鹏,孙立新,覃祚焕,等,2021. 中国白垩纪岩石地层划分和对比[J]. 地层学杂志,45(3):375 − 401.

    Google Scholar

    Xi D P,Sun L X,Qin Z H,et al.,2021. Lithostratigraphic subdivision and correlation of the cretaceous in China[J]. Journal of Stratigraphy,45(3):375 − 401 (in Chinese with English abstract).

    Google Scholar

    [36] 许志琴,杨文采,杨经绥,等,2016. 中国大陆科学钻探的过去、现在和未来——纪念中国大陆科学钻探实施 15 周年、国际大陆科学钻探委员会成立 20 周年[J]. 地质学报,90(9):2109−2122.

    Google Scholar

    Xu Z Q,Yang W C,Yang J S,et al.,2016. 15 Years of hardship and struggle history and the prospects for the future of the Chinese Continental Scientific Drilling program (CCSD) : In memory of the 15 year anniversary of CCSD and 20 year anniversary of ICDP[J]. Acta Geologica Sinica,90(9):2109−2122 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(180) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint