2024 Vol. 44, No. 2
Article Contents

CAO Yan, JIN Zhijun, ZHU Rukai, LIU Kouqi, LIANG Xinping. 2024. Progress and prospects in the research on pore structures of organic-rich mud shales. Sedimentary Geology and Tethyan Geology, 44(2): 231-252. doi: 10.19826/j.cnki.1009-3850.2023.06004
Citation: CAO Yan, JIN Zhijun, ZHU Rukai, LIU Kouqi, LIANG Xinping. 2024. Progress and prospects in the research on pore structures of organic-rich mud shales. Sedimentary Geology and Tethyan Geology, 44(2): 231-252. doi: 10.19826/j.cnki.1009-3850.2023.06004

Progress and prospects in the research on pore structures of organic-rich mud shales

More Information
  • Exploring the division scheme, frontier characterization method, evolution and influence factors of pore structures of organic-rich shales is important for the evaluation and development strategy of shale oil reserves. The classification scheme of the pore structure and the advantages of different modern testing tools in characterizing the pore structure of mud shale were summarized by investigating the research progress on the pore structures of organic-rich shales. The evolutionary patterns of pore structures and the main controlling factors of organic pores and inorganic pores in marine shales and continental shales were discussed. The future development trend of pore research in organic-rich shales was foreseen. Our results indicate that the means of shale reservoir characterization can be divided into four main categories: imaging method, fluid intrusion method, adsorption method, and scattering method. Infrared-linked atomic force microscopy (AFM-IR) can reveal non-homogeneity in the chemical and rock mechanics of microscopic components in mud shales. The application of small-angle neutron scattering (SANS), nuclear magnetic resonance (NMR), and nano-CT is an important way to reveal pore connectivity. The sedimentary environment controls the lithofacies of shale and the source of organic matter. Diagenesis, hydrocarbon generation and their interaction are the main controlling factors for pore evolution of shale. The porosity of marine and terrestrial mud shale exhibits a pattern of decreasing, subsequently increasing, once again decreasing, then increasing again, and finally decreasing, with time and depth. However, in the immature to mature stage of continental shale, the porosity changes occur more frequently compared with marine shale. The development potential of organic pores of type Ⅰ kerogen is much higher than that of type Ⅲ kerogen, and abundant organic pores can develop in sapropelic macerals with strong hydrocarbon generation capacity. Pyrobitumen, formed by secondary cracking of migratory liquid hydrocarbon, can provide a more efficient and continuous infiltration path. The interconversion between different inorganic minerals during diagenetic processes, the differential dissolution of feldspar, carbonate rock and other minerals, as well as the compaction, pressolution, and cementation of minerals, all complicate the inorganic pore network. Organic-inorganic interactions and the rock mechanical properties of minerals are also important influences on the development of inorganic pores. The environments in which cores are located at the surface and in the subsurface vary greatly, and future research needs to establish a feedback mechanism and correction mechanism for pore structure between surface and subsurface realities of the core, in order to further restore the real state of shale oil and gas in the pore structures of the subsurface.

  • 加载中
  • [1] 白龙辉, 柳波, 迟亚奥, 等, 2021. 二维核磁共振技术表征页岩所含流体特征的应用——以松辽盆地青山口组富有机质页岩为例[J]. 石油与天然气地质, 42(6): 1389−1400

    Google Scholar

    Bai L H, Liu B, Chi Y A, et al. , 2021.2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil&Gas Geology, 42(06): 1389−1400.

    Google Scholar

    [2] Bernard S, Horsfield B, 2014. Thermal Maturation of Gas Shale Systems [J]. Annual Review of Earth & Planetary Sciences, 42: 635−651.

    Google Scholar

    [3] Boles J R, Franks S J, 1979. Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation [J]. Journal of Sedimentary Research, 49: 55−70.

    Google Scholar

    [4] Bridge J S, Demicco R V, 2009. Earth surface processes, landforms and sediment deposits [J]. Journal of Quaternary Science, 24: 642−642.

    Google Scholar

    [5] Cao T, Xu H, Liu G, et al. , 2020. Factors influencing microstructure and porosity in shales of the Wufeng-Longmaxi formations in northwestern Guizhou, China[J]. Journal of Petroleum Science and Engineering, 191: 107181. doi: 10.1016/j.petrol.2020.107181

    CrossRef Google Scholar

    [6] Cao Y, Han H, Guo C, et al. , 2020. Influence of Extractable Organic Matters on Pore Structure and Its Evolution of Chang 7 Member Shales in the Ordos Basin, China: Implications from Extractions Using Various Solvents [J]. Journal of Natural Gas Science and Engineering, 79: 103370. doi: 10.1016/j.jngse.2020.103370

    CrossRef Google Scholar

    [7] Cao Y, Han H, Liu H W, et al. , 2019. Influence of solvents on pore structure and methane adsorption capacity of lacustrine shales: An example from a Chang 7 shale sample in the Ordos Basin, China [J]. Journal of Petroleum Science and Engineering, 178: 419−428. doi: 10.1016/j.petrol.2019.03.052

    CrossRef Google Scholar

    [8] Cao Y, Jin Z, Zhu R, et al. , 2023. Microstructures of continental organic−rich shale and its adjacent siltstone and carbonate rocks—An example from the Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China[J]. Geoenergy Science and Engineering, 211705.

    Google Scholar

    [9] Chalmers G R L, Bustin R M, 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada [J]. International Journal of Coal Geology, 70: 223−239. doi: 10.1016/j.coal.2006.05.001

    CrossRef Google Scholar

    [10] Chang J, Fan X, Jiang Z, et al. , 2022. Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China[J]. Applied Clay Science, 216: 106334. doi: 10.1016/j.clay.2021.106334

    CrossRef Google Scholar

    [11] Chen L, Jiang Z, Liu Q, et al. , 2019a. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales[J]. Marine and Petroleum Geology, 104: 200−216. doi: 10.1016/j.marpetgeo.2019.03.027

    CrossRef Google Scholar

    [12] Chen L, Liu K, Jiang S, et al. , 2021. Effect of adsorbed phase density on the correction of methane excess adsorption to absolute adsorption in shale[J]. Chemical Engineering Journal, 420: 127678. doi: 10.1016/j.cej.2020.127678

    CrossRef Google Scholar

    [13] Chen L, Zuo L, Jiang Z, et al. , 2019b. Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale[J]. Chemical Engineering Journal, 361: 559−570. doi: 10.1016/j.cej.2018.11.185

    CrossRef Google Scholar

    [14] Clarkson C R, Freeman M, He L, et al. , 2012. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis [J]. Fuel, 95: 371−385. doi: 10.1016/j.fuel.2011.12.010

    CrossRef Google Scholar

    [15] Desbois G, Urai J L, Houben M, et al. , 2009. Morphology of pore space in claystones from reference sites for research − Characterization of porosity from ion beam sectioning and cryo−SEM observations[C]. International Conference on Experimental Mechanics.

    Google Scholar

    [16] 董海良, 于炳松, 吕国, 2009. 地质微生物学中几项最新研究进展[J]. 地质论评, 55(4): 552−580 doi: 10.3321/j.issn:0371-5736.2009.04.011

    CrossRef Google Scholar

    Dong H L, Yu B S, Lü G, 2009. Recent Developments in Geomicrobiology[J]. GEOLOGICAL REVIEW, 55(04): 552−580. doi: 10.3321/j.issn:0371-5736.2009.04.011

    CrossRef Google Scholar

    [17] Emmanuel R J, Day-Stirrat, 2012. A framework for quantifying size dependent deformation of nano-scale pores in mudrocks [J]. Journal of Applied Geophysics, 86: 29−35. doi: 10.1016/j.jappgeo.2012.07.011

    CrossRef Google Scholar

    [18] Gao Z Y, Hu Q H, 2018. Pore structure and spontaneous imbibition characteristics of marine and continental shales in China [J]. AAPG Bulletin, 102: 1941−1961. doi: 10.1306/03291817297

    CrossRef Google Scholar

    [19] 苟启洋, 徐尚, 郝芳, 等, 2018. 纳米CT页岩孔隙结构表征方法——以JY-1井为例[J]. 石油学报, 39(11): 1253−1261 doi: 10.7623/syxb201811005

    CrossRef Google Scholar

    Gou Q Y, Xu S, Hao F, et al. , 2018. Characterization method of shale pore structure based on nano-CT: acasestudy of Well JY-1[J]. Acta Petrolei Sinica, 39(11): 1253−1261. doi: 10.7623/syxb201811005

    CrossRef Google Scholar

    [20] Hackley P C, Jubb A M, Burruss R C, et al. , 2020. Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM)[J]. International Journal of Coal Geology, 223: 103445. doi: 10.1016/j.coal.2020.103445

    CrossRef Google Scholar

    [21] Hackley P C, Jubb A M, McAleer R J, et al. , 2021. A review of spatially resolved techniques and applications of organic petrography in shale petroleum systems[J]. International Journal of Coal Geology, 241, 103745.

    Google Scholar

    [22] Heller-Kallai L, Aizenshtat Z, Miloslavski I, 1984. The Effect of Various Clay Minerals on the Thermal Decomposition of Stearic Acid under 'bulk Flow' Conditions [J]. Clay Minerals, 19: 779−788. doi: 10.1180/claymin.1984.019.5.08

    CrossRef Google Scholar

    [23] Hilner E, Andersson M P, Hassenkam T, et al. , 2015. The effect of ionic strength on oil adhesion in sandstone-the search for the low salinity mechanism[J]. Scientific Reports, 5: 9933. doi: 10.1038/srep09933

    CrossRef Google Scholar

    [24] Hu G, Qian P, Kun J, et al. , 2020. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition [J]. Marine and Petroleum Geology, 116: 104314. doi: 10.1016/j.marpetgeo.2020.104314

    CrossRef Google Scholar

    [25] 华柑霖, 吴松涛, 邱振, 等, 2021. 页岩纹层结构分类与储集性能差异——以四川盆地龙马溪组页岩为例[J]. 沉积学报, 39(2): 281−296 doi: 10.14027/j.issn.1000-0550.2020.110

    CrossRef Google Scholar

    Hua G L, Wu S T, Qiu Z, et al. , 2021. Lamination Texture and Its Effect on Reservoir Properties: A Case Study of Longmaxi Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 39(2): 281−296. doi: 10.14027/j.issn.1000-0550.2020.110

    CrossRef Google Scholar

    [26] 黄可可, 黄思静, 吕杰, 等, 2012. 鄂尔多斯盆地东北部太原组砂岩中伊利石的特征及成岩演化[J]. 吉林大学学报(地球科学版), 42(S2): 43-52

    Google Scholar

    Huang K K, Huang S J, Lü J, et al. , 2012. Nature and Diagenetic Evolution of Illite in the Sandstone Reservoirs of Taiyuan Formation, Northeast Ordos Basin[J]. Journal of Jilin University( Earth Science Edition), 42(S2): 43-52.

    Google Scholar

    [27] 黄振凯, 黎茂稳, 郑伦举, 等, 2020. 湖相烃源岩演化全过程中的孔隙演化机理——基于地质样品与模拟实验的认识[J]. 石油实验地质, 42(4): 639−645+652 doi: 10.11781/sysydz202004639

    CrossRef Google Scholar

    Huang Z K, Li M W, Zheng L J, et al. , 2020. Pore development in lacustrine source rock evolution: interpretation based on geological samples and simulation experiments[J]. Petroleum Geology and Experiment, 42(4): 639−645+652. doi: 10.11781/sysydz202004639

    CrossRef Google Scholar

    [28] Huizinga B J, Tannenbaum E, Kaplan I R, 1987. The role of minerals in the thermal alteration of organic matter—III. Generation of bitumen in laboratory experiments[J]. Organic Geochemistry, 11: 591−604.

    Google Scholar

    [29] Ji W, Hao F, Schulz H M, et al. , 2019. The architecture of organic matter and its pores in highly mature gas shales of the lower Silurian Longmaxi Formation in the upper Yangtze platform, south China[J]. AAPG Bulletin, 103: 2909-2942. doi: 10.1306/04101917386

    CrossRef Google Scholar

    [30] 姜兰兰, 潘长春, 刘金钟, 2009. 矿物对原油裂解影响的实验研究[J]. 地球化学, 38(02): 165−173 doi: 10.3321/j.issn:0379-1726.2009.02.009

    CrossRef Google Scholar

    Jiang L L, Pan C C, Liu J Z, 2009. Experimental study on effects of minerals on oil cracking[J]. Geochimicy, 38(02): 165−173. doi: 10.3321/j.issn:0379-1726.2009.02.009

    CrossRef Google Scholar

    [31] 姜振学, 李鑫, 王幸蒙, 等, 2021. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 42(1): 41−53 doi: 10.11743/ogg20210104

    CrossRef Google Scholar

    Jiang Z X, Li X, Wang X M, et al. , 2021. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil&Gas Geology, 42(1): 41−53. doi: 10.11743/ogg20210104

    CrossRef Google Scholar

    [32] 焦堃, 姚素平, 吴浩, 等, 2014. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 20(1): 151−161.

    Google Scholar

    Jiao K, Yao S P, Wu H, et al. , 2017. Advances in Characterization of Pore System of Gas Shales[J]. Geological Journal of China Universities, 2(4): 445−456.

    Google Scholar

    [33] 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 40(3): 451−458 doi: 10.11743/ogg20190301

    CrossRef Google Scholar

    Jin Z J, Bai Z B, Gao B, et al. , 2019. Has China ushered in the shale oil and gas revolution?[J]. Oil&Gas Geology, 40(3): 451−458. doi: 10.11743/ogg20190301

    CrossRef Google Scholar

    [34] 金之钧, 王冠平, 刘光祥, 等, 2021a. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 42(7): 821−835

    Google Scholar

    Jin Z J, Wang G P, Liu G X, et al. , 2021a. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 42(7): 821−835.

    Google Scholar

    [35] 金之钧, 朱如凯, 梁新平, 等, 2021b. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 48(6): 1276−1287

    Google Scholar

    Jin Z J, Zhu R K, Liang X P, et al. , 2021b. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 48(6): 1276−1287.

    Google Scholar

    [36] 靳平平, 欧成华, 马中高, 等, 2018. 蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J]. 石油物探, 57(3): 344−355.

    Google Scholar

    Jin P P, Ou C H, Ma Z G, et al. , 2018. Evolution of montmorillonite and its related clay minerals and their effects on shale gas development[J]. Geophysical Prospecting for Petroleum, 57(3): 344−355.

    Google Scholar

    [37] Jurg J W, Eisma E, 1964. Petroleum hydrocarbons: generation from fatty acid [J]. Science, 144: 1451−1452. doi: 10.1126/science.144.3625.1451

    CrossRef Google Scholar

    [38] Klaver J, Desbois G, Littke R, et al. , 2015. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales [J]. Marine and Petroleum Geology, 59: 451−466. doi: 10.1016/j.marpetgeo.2014.09.020

    CrossRef Google Scholar

    [39] 李斌, 孟自芳, 张百涛, 等, 2008. 含铀物质对有机质生烃的实验研究[J]. 矿物学报, 28(4): 421−425 doi: 10.3321/j.issn:1000-4734.2008.04.014

    CrossRef Google Scholar

    Li B, Meng Z F, Zhang B T, et al. , 2008. Experimental research on the influence of U-bearing minerals on hydrocarbon-generation of organic matter [J]. Acta Mineralogica Sinica, 28(4): 421−425. doi: 10.3321/j.issn:1000-4734.2008.04.014

    CrossRef Google Scholar

    [40] Li T W, Jiang Z X, Xu C L, et al. , 2017. Shale micro-nano pore structure characteristics in the lower third member of the continental Shahejie Formation, Zhanhua Sag [J]. Petroleum Science Bulletin, 2: 445−456.

    Google Scholar

    [41] 柳波, 石佳欣, 付晓飞, 等, 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 45(5): 828−838.

    Google Scholar

    Liu B, Shi J X, Fu X F, et al. , 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 45(5): 1−11.

    Google Scholar

    [42] Liu B, Wang Y, Tian S, et al., 2022. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window[J]. International Journal of Coal Geology, 261: 104079.

    Google Scholar

    [43] Liu H M, Yuan P, Liu D, et al. , 2018. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals [J]. Applied Clay Science, 153: 205−216. doi: 10.1016/j.clay.2017.12.028

    CrossRef Google Scholar

    [44] Liu X F, Song D Z, He X Q, et al. , 2019. Nanopore structure of deep-burial coals explored by AFM [J]. Fuel, 246: 9−17. doi: 10.1016/j.fuel.2019.02.090

    CrossRef Google Scholar

    [45] Liu X F, Song D Z, He X Q, et al. , 2019. Quantitative analysis of coal nanopore characteristics using atomic force microscopy [J]. Powder Technology, 346: 332−340. doi: 10.1016/j.powtec.2019.02.027

    CrossRef Google Scholar

    [46] Loucks R G, Reed R M, Ruppel S C, et al. , 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale [J]. Journal of Sedimentary Research, 79: 848−861. doi: 10.2110/jsr.2009.092

    CrossRef Google Scholar

    [47] Loucks R G, Reed R M, Ruppel S C, et al. , 2010. Preliminary classification of matrix pores in mudrocks [J]. Gulf Coast Association. Geology. Society. Transactions, 60: 435−441.

    Google Scholar

    [48] Loucks R G, Reed R M, Ruppel S C, et al. , 2012. Spectrum of pore types and networks in mudrocks and a descriptive classifcation for matrix-related mudrock pores [J]. AAPG Bulletin, 96: 1071−1098. doi: 10.1306/08171111061

    CrossRef Google Scholar

    [49] 卢红选, 孟自芳, 李斌, 等, 2007. 含铀物质对褐煤有机质热模拟生烃的影响[J]. 新疆石油地质(6): 718−720

    Google Scholar

    Lu H X, Meng Z F, Li B, et al. , 2007. Effect of Uranium Substance on Hydrocarbon Generation from Lignite by Hydrous Pyrolysis [J]. Xinjiang Petroleum Geology (6): 718−720.

    Google Scholar

    [50] 马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 45(4): 561−574

    Google Scholar

    Ma Y S, Cai X Y, Zhao P R, 2018. China’s Shale Gas Exploration and Development: Understanding and Practice[J]. Petroleum Exploration and Development, 45(4): 561−574.

    Google Scholar

    [51] Mastalerz M, Agnieszka D, Stankiewicz A B, 2018. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review [J]. International Journal of Coal Geology, 195: 14−36. doi: 10.1016/j.coal.2018.05.013

    CrossRef Google Scholar

    [52] Mastalerz M, Schimmelmann A, Drobniak A, et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG bulletin, 97: 1621−1643.

    Google Scholar

    [53] Milliken K L, Rudnicki M, Awwiller D N, et al. , 2013. Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania [J]. AAPG Bulletin, 97: 177−200. doi: 10.1306/07231212048

    CrossRef Google Scholar

    [54] Nguyen A V, Nalaskowski J, Miller J D, et al. , 2003. Attraction between hydrophobic surfaces studied by atomic force microscopy[J]. International Journal of Mineral Processing, 72: 215−225. doi: 10.1016/S0301-7516(03)00100-5

    CrossRef Google Scholar

    [55] Pan L, Xiao X, Tian H, et al., 2015. A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China[J]. International Journal of Coal Geology, 146: 68−78.

    Google Scholar

    [56] Ross D J K, Bustin R M, 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [J]. Marine and Petroleum Geology, 26: 916−927. doi: 10.1016/j.marpetgeo.2008.06.004

    CrossRef Google Scholar

    [57] Rouquerol J, Avnir D, Fairbridge C W, et al. , 1994. Recommendations for the characterization of porous solids [J]. Pure and Applied Chemistry, 66: 1739−1758. doi: 10.1351/pac199466081739

    CrossRef Google Scholar

    [58] Schieber J, 2010. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones - illustrated with examples across the Phanerozoic[C].SPE Unconventional Gas Conference

    Google Scholar

    [59] 佘敏, 寿建峰, 沈安江, 等, 2014. 从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J]. 地球化学, 43(3): 276−286 doi: 10.19700/j.0379-1726.2014.03.009

    CrossRef Google Scholar

    She M, Shou J F, Shen A J, et al. , 2014. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J]. GEOCHIMIC, 43(3): 276−286. doi: 10.19700/j.0379-1726.2014.03.009

    CrossRef Google Scholar

    [60] 宋董军, 妥进才, 王晔桐, 等, 2019. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报, 37(6): 1309−1324 doi: 10.14027/j.issn.1000-0550.2019.030

    CrossRef Google Scholar

    Song D J, Sui J C, Wang Y T, et al. , 2019. Research progress on nano-scale pore structure characteristics of organic-rich shale[J]. Acta Sedimentologica Sinica, 37(6): 1309−1324. doi: 10.14027/j.issn.1000-0550.2019.030

    CrossRef Google Scholar

    [61] Sun M D, Yu B S, Hu Q H, et al. , 2017. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm [J]. International Journal of Coal Geology, 171: 61−68. doi: 10.1016/j.coal.2016.12.004

    CrossRef Google Scholar

    [62] 孙先达, 索丽敏, 张民志, 等, 2005. 激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的新进展[J]. 岩石学报(5): 1479−1488

    Google Scholar

    Sun X D, Suo L M, Zhang M Z, et al. , 2005. New progress of reservoir research by the technology of Laser Confocal Scanning Microscope analysis in the Daqing exploration area[J]. Acta Petrologica Sinica(5): 1479−1488.

    Google Scholar

    [63] 孙中良, 李志明, 申宝剑, 等, 2022. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 44(5): 930−940 doi: 10.11781/sysydz202205930

    CrossRef Google Scholar

    Sun Z L, Li Z M, Shen B J, et al. , 2022. NMR technology in reservoir evaluation for shale oil and shale gas[J]. Petroleum Geology and Experiment, 44(5): 930−940. doi: 10.11781/sysydz202205930

    CrossRef Google Scholar

    [64] 谭静强, 张煜麟, 罗文彬, 等, 2019. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报, 38(1): 18−29+203 doi: 10.19658/j.issn.1007-2802.2019.38.027

    CrossRef Google Scholar

    Tan J Q, Zhang Y L, Luo W B, et al. , 2019. Research Progress on Microscale and Nanoscale Pore Structures of Organic-Rich Muddy Shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 18−29+203. doi: 10.19658/j.issn.1007-2802.2019.38.027

    CrossRef Google Scholar

    [65] Tannenbaum E , Huizinga B J , Kaplan I R . Role of minerals in thermal alteration of organic matter−−II: a material balance. [J]. AAPG Bulletin, 1986, 70(9): 1156.

    Google Scholar

    [66] Thommes M, Kaneko K, Neimark A V, et al. , 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and applied chemistry, 87: 1051−1069. doi: 10.1515/pac-2014-1117

    CrossRef Google Scholar

    [67] Thompson-Rizer C L, 1987. Some optical characteristics of solid bitumen in visual kerogen preparations [J]. Organic Geochemistry, 11: 385−392. doi: 10.1016/0146-6380(87)90071-4

    CrossRef Google Scholar

    [68] Tissot B P, Welte D H, 1978. Petroleum formation and occurrence[M]. Springer

    Google Scholar

    [69] Topór T, Derkowski A, Ziemiański P, et al. , 2017. The effect of organic matter maturation and porosity evolution on methane storage potential in the Baltic Basin (Poland) shale-gas reservoir[J]. International Journal of Coal Geology, 180: 46−56. doi: 10.1016/j.coal.2017.07.005

    CrossRef Google Scholar

    [70] Wang F, Guo S, 2019. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin[J]. Marine and Petroleum Geology, 102: 271−282. doi: 10.1016/j.marpetgeo.2018.12.045

    CrossRef Google Scholar

    [71] Wang Y, Liu L F, Zheng S S, et al. , 2019. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale[J]. Journal of Natural Gas Science and Engineering, 67: 134−146. doi: 10.1016/j.jngse.2019.04.020

    CrossRef Google Scholar

    [72] 汪贺, 师永民, 徐大卫, 等, 2019, 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 26(05): 21−30

    Google Scholar

    Wang H, Shi Y M, Xu D W, et al. , 2019. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 26(05): 21−30.

    Google Scholar

    [73] 王剑, 周路, 刘金, 等, 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组酸碱交替成岩作用特征及对页岩储集层的影响[J]. 石油勘探与开发, 47(05): 898−912

    Google Scholar

    Wang J, Zhou L, Liu J, et al. , 2020. Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China [J]. Petroleum Exploration and Development, 47(05): 898−912.

    Google Scholar

    [74] 王琨, 周航宇, 赖杰, 等, 2020. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 41(02): 101−114

    Google Scholar

    Wang K, Zhou H Y, Lai J, et al., 2020. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 41(02): 101−114.

    Google Scholar

    [75] 王朋飞, 田黔宁, 张玮, 等, 2020. 氦离子显微镜在页岩有机质孔隙识别中的应用[J]. 电子显微学报, 39(03): 274−281 doi: 10.3969/j.issn.1000-6281.2020.03.008

    CrossRef Google Scholar

    Wang P F, Tian Q N, Zhang W, et al. , 2020. Application of helium ion microscope in recognition of organic matter pore in shale[J]. Journal of Chinese Electron Microscopy Society, 39(03): 274−281. doi: 10.3969/j.issn.1000-6281.2020.03.008

    CrossRef Google Scholar

    [76] 王曦蒙, 刘洛夫, 汪洋, 等, 2019. 川南地区龙马溪组页岩岩相对页岩孔隙空间的控制[J]. 石油学报, 40(10): 1192−1201 doi: 10.7623/syxb201910005

    CrossRef Google Scholar

    Wang X M, Liu L F, Wang Y, et al. , 2019. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin[J]. Acta Petrolei Sinica, 40(10): 1192−1201. doi: 10.7623/syxb201910005

    CrossRef Google Scholar

    [77] 王玉杰, 赵迪斐, 卢琪荣, 等, 2020. 纹层、夹层沉积构造对海相页岩储集空间和储层脆性的影响: 以四川盆地龙马溪组页岩为例[J]. 非常规油气, 7(6): 33−40

    Google Scholar

    Wang Y J, Zhao D F, Lu Q R, et al. , 2020. Impact of laminae and interlayer sedimentary structure on the storage and brittleness of shale reservoirs: Taking Longmaxi formation shale in Sichuan Basin as an example[J]. Unconventional Oil & Gas, 7(6): 33−40.

    Google Scholar

    [78] 魏祥峰, 刘若冰, 张廷山, 等, 2013. 页岩气储层微观孔隙结构特征及发育控制因素: 以川南-黔北XX地区龙马溪组为例 [J]. 天然气地球科学, 24(5): 1048−1059.

    Google Scholar

    Wei X F, Liu R B, Zhang T S, et al. , 2010. Micro-pores Structure Characteristics and Development Control Factors of Shale Gas Reservoir: A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou[J]. Natural Gas Geo-science, 21(2): 350−356.

    Google Scholar

    [79] Wilkin R T, Arthur M A, Dean, W E, 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions [J]. Earth and Planetary Science Letters, 148: 517−525. doi: 10.1016/S0012-821X(97)00053-8

    CrossRef Google Scholar

    [80] Williams L A, Crerar D A, 1985. Silica diagenesis; II, General mechanisms [J]. Journal of Sedimentary Research, 55: 312−321.

    Google Scholar

    [81] 吴松涛, 朱如凯, 崔景伟, 等, 2020. 非常规储层孔隙结构表征: 思路、思考与展望[J]. 地质论评, 2020, 66(S1): 151−154

    Google Scholar

    Wu S T, Zhu R K, Cui J W et al. , 2020. Characterization of pore structure in unconventional reservoirs: ideas, thoughts and prospects[J]. Geological Review, 66(S1): 151−154.

    Google Scholar

    [82] Wu Y D, Ji L M, He C, et al. , 2016. The effects of pressure and hydrocarbon expulsion on hydrocarbon generation during hydrous pyrolysis of type-I kerogen in source rock [J]. Journal of Natural Gas Science and Engineering, 34: 1215−1224. doi: 10.1016/j.jngse.2016.08.017

    CrossRef Google Scholar

    [83] 徐立富, 邓纪梅, 杜佳, 等, 2021. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩岩相类型和储层差异[J]. 煤炭学报, 46(S2): 862−876

    Google Scholar

    Xu L F, Deng J M, Du J, et al. , 2021. Lithofacies types and reservoir differences of marine continental transitional shale in Linxing area, eastern margin of Ordos Basin[J]. Journal of China Coal Society, 46(S2): 862−876.

    Google Scholar

    [84] 徐良伟, 杨克基, 鲁文婷, 等, 2022. 富有机质泥页岩微纳米孔隙系统演化特征及模式研究新进展[J]. 沉积学报, 40(01): 1−21

    Google Scholar

    Xu L W, Yang K J, Lu W T. et al. , 2022. New Research Progress on Organic−rich Shale Micro− and Nanoscale Pore System Evolution Characteristics and Models[J]. Acta Sedimentologica Sinica, 40(01): 1−21.

    Google Scholar

    [85] 闫建萍, 贾祥娟, 邵德勇, 等, 2015. 四川盆地龙马溪组页岩有机孔隙SEM表征及成因分析[J]. 天然气地球科学, 26(8): 1540−1546

    Google Scholar

    Yan J P, Jia X J, Shao D Y, et al. , 2015. Characterization of Organic Matter-hosted Pores by SEM Method and Their Formation Mechanisms for Shales of Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geo-science, 26(8): 1540−1546.

    Google Scholar

    [86] 严启团, 谢增业, 李剑, 2003. 应用环境扫描电镜实现烃源岩生排烃过程的可视化新技术[J]. 石油实验地质, (02): 202−205 doi: 10.3969/j.issn.1001-6112.2003.02.018

    CrossRef Google Scholar

    Yan Q H, Xie Z Y, Li J, 2003. A new visualization technique for hydrocarbon generation and expulsion of source rocks using environmental scanning electron microscopy[J]. Petroleum Geology and Experiment, (02): 202−205. doi: 10.3969/j.issn.1001-6112.2003.02.018

    CrossRef Google Scholar

    [87] 杨雷, 金之钧, 2019. 全球页岩油发展及展望[J]. 中国石油勘探, 24(5): 553−559 doi: 10.3969/j.issn.1672-7703.2019.05.002

    CrossRef Google Scholar

    Yang L, Jin Z J, 2019. Global shale oil development and prospects [J]. China Petroleum Exploration, 24(5): 553−559. doi: 10.3969/j.issn.1672-7703.2019.05.002

    CrossRef Google Scholar

    [88] 于亮, 朱亚林, 闫昭圣, 等, 2016. 环境扫描电镜在石油地质研究中的应用[J]. 电子显微学报, 35(06): 561−566 doi: 10.3969/j.issn.1000-6281.2016.06.015

    CrossRef Google Scholar

    Yu L, Zhu Y L, Yan Z S, et al. , 2016. The application of ESEM to the study of the oil geology[J]. Journal of Chinese Electron Microscopy Society, 35(06): 561−566. doi: 10.3969/j.issn.1000-6281.2016.06.015

    CrossRef Google Scholar

    [89] 俞雨溪, 王宗秀, 张凯逊, 等, 2020. 流体注入法定量表征页岩孔隙结构测试方法研究进展[J]. 地质力学学报, 26(02): 201−210

    Google Scholar

    Yu Y X, Wang Z X, Zhang K X, et al. , 2020. Advances in quantitative characterization of shale pore structure by using fluid injection methods[J] Journal of Geomechanics, 26 (2): 201−210.

    Google Scholar

    [90] Zhang H, Zhu Y M, Wang Y, et al. , 2016. Comparison of organic matter occurrence and organic nanopore structure within marine and terrestrial shale[J]. Journal of Natural Gas Science and Engineering, 32: 356−363. doi: 10.1016/j.jngse.2016.04.040

    CrossRef Google Scholar

    [91] 张吉振, 李贤庆, 张学庆, 等. , 2019. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报, 44(S1): 195−204

    Google Scholar

    Zhang J Z, Li X Q, Zhang X Q, et al. , 2019. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society, 44(S1): 195−204.

    Google Scholar

    [92] 张林浩, 徐嫣然, 孙梦迪, 等, 2021. 利用小角中子散射表征页岩闭孔结构与演化[J]. 沉积学报, 39(02): 310−323 doi: 10.14027/j.issn.1000-0550.2020.111

    CrossRef Google Scholar

    Zhang L h, Xu Y R, Sun M D, et al. , 2021. The Structure and Evolution of Closed Pores in Shale Determined by Small Angle Neutron Scattering[J]. Acta Sedimentologica Sinica, 39(02): 310−323. doi: 10.14027/j.issn.1000-0550.2020.111

    CrossRef Google Scholar

    [93] 张琴, 刘畅, 梅啸寒, 等, 2015. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 36(04): 666−674

    Google Scholar

    Zhang Q, Liu C, Mei H X, et al. , 2015. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil&Gas Geology, 36(04): 666−674.

    Google Scholar

    [94] 赵文智, 贾爱林, 位云生, 等, 2020. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 25(01): 31−44

    Google Scholar

    Zhao W Z, Jia A L, Wei Y S. 2020. Progress in Shale Gas Exploration in China and Prospects for Future Development[J]. CHINA PETROLEUM EXPLORATION, 25(01): 31−44.

    Google Scholar

    [95] 赵习, 刘波, 郭荣涛, 等, 2017. 储层表征技术及应用进展[J]. 石油实验地质, 39(02): 287−294

    Google Scholar

    Zhao X, Liu B, Guo R T, et al. , 2017. Reservoir characterization and its application to development[J]. Petroleum Geology and Experiment, 39(02): 287−294.

    Google Scholar

    [96] 朱汉卿, 贾爱林, 位云生, 等, 2017. 低压气体吸附实验在页岩孔隙结构表征中的应用[J]. 东北石油大学学报, 41(06): 36-45+65+122.

    Google Scholar

    Zhu H Q, Jia A L, Wei Y S, et al. , 2017. Application of low-pressure gas adsorption experiment to characterizing pore structure of the shale[J]. Journal of Northeast Petroleum University, 41(6): 36−45.

    Google Scholar

    [97] 朱如凯, 吴松涛, 苏玲, 等, 2016. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 37(11): 1323−1336 doi: 10.7623/syxb201611001

    CrossRef Google Scholar

    Zhu R K, Wu S T, Su L, et al. , 2016. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 37(11): 1323−1336. doi: 10.7623/syxb201611001

    CrossRef Google Scholar

    [98] 朱筱敏. 2008. 沉积岩石学[M]. 石油工业出版社.

    Google Scholar

    Zhu X M. 2008. Sedimentary Petrology[M]. Petroleum Industry Press.

    Google Scholar

    [99] Zhu X J, Cai J G, Wang G L, et al. , 2018. Role of organo-clay composites in hydrocarbon generation of shale [J]. International Journal of Coal Geology, 192: 83−90. doi: 10.1016/j.coal.2018.04.002

    CrossRef Google Scholar

    [100] 邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响[J]. 石油学报, 41(01): 1−12

    Google Scholar

    Zou C N, Pan S Q, Jing Z H, et al. , 2020. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 41(01): 1−12.

    Google Scholar

    [101] 邹才能, 杨智, 朱如凯等. 2015. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 89(06): 979−1007

    Google Scholar

    Zou C N, Yang Z, Zhu R K, et al. , 2015. Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies[J]. Acta Geologica Sinica, 89(06): 979−1007.

    Google Scholar

    [102] 左太森, 马长利, 韩泽华, 等, 2021. 小角中子散射技术及其在大分子结构表征中的应用[J]. 高分子学报, 52(09): 1192−1205

    Google Scholar

    Zuo T S, Ma C L, Han Z H, et al. , 2021. The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules[J]. Acta Polymerica Sinica, 52(09): 1192−1205.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(1)

Article Metrics

Article views(1109) PDF downloads(281) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint