2024 Vol. 44, No. 2
Article Contents

ZHANG Ruolin, LIU Yan, JIN Siding, ZHOU Yang. 2024. Sedimentary features of gentle-slope tide-influenced braided delta: A case study of Carboniferous Kalashayi Formation in Tahe Oilfield. Sedimentary Geology and Tethyan Geology, 44(2): 295-310. doi: 10.19826/j.cnki.1009-3850.2023.02015
Citation: ZHANG Ruolin, LIU Yan, JIN Siding, ZHOU Yang. 2024. Sedimentary features of gentle-slope tide-influenced braided delta: A case study of Carboniferous Kalashayi Formation in Tahe Oilfield. Sedimentary Geology and Tethyan Geology, 44(2): 295-310. doi: 10.19826/j.cnki.1009-3850.2023.02015

Sedimentary features of gentle-slope tide-influenced braided delta: A case study of Carboniferous Kalashayi Formation in Tahe Oilfield

More Information
  • The Carboniferous Kalashayi Formation in Tahe Oilfield is an important area of clastic rock oil and gas exploration. However, its depositional environment and facies types have been controversial, restricting its process in oil and gas exploration. The depositional environment and distribution of sand bodies of the Carboniferous Kalashayi Formation in Tahe Oilfield in this paper are guided by sequence stratigraphy and sedimentology based on well data, logging data, and cores from this formation. The results show that the study area is characterized by both braided river delta and tidal flat sedimentary. And there are 7 types of deposits, such as distributary channel, underwater distributary channel, estuary bar, tidal channel, sand flat, sand and mud mixed flat, and mud flat, that can be identified. In the aspect of plane, the northern part is dominated by braided river delta facies, and the southern part is dominated by tidal deposition. And the central part has a large number of underwater distributary channels transformed by tides. Rivers mainly control the regression period, and the scale of underwater distributary channels is large. The tidal action mainly controls the transgression period, and the scale of the tidal channel is larger. On this basis, the vertical facies sequence and fluvial-tidal sedimentary model of the braided river delta under the gentle slope of the Carboniferous Kalashayi Formation in the Tahe Oilfield are established and can provide a reference for the next step of the exploration in this interval.

  • 加载中
  • [1] Chen S, Steel R J, Dixon J F, et al. , 2014. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta (Morne L'Enfer Formation) SW Trinidad[J]. Marine and Petroleum Geology, 57: 208-232. doi: 10.1016/j.marpetgeo.2014.05.014

    CrossRef Google Scholar

    [2] Chen S, Steel R J, Olariu C, 2015. Chapter 7 − Palaeo−Orinoco (Pliocene) channels on the tide−dominated Morne L'Enfer delta lobes and estuaries, SW Trinidad. In: Developments in Sedimentology[M]. Amsterdam: Elsevier, 68: 227−281.

    Google Scholar

    [3] Collins D S, Johnson H D, Allison P A, et al. , 2018. Mixed process, humid-tropical, shoreline-shelf deposition and preservation: Middle Miocene-modern baram delta province, northwest Borneo[J]. Journal of Sedimentary Research, 88(4): 399-430. doi: 10.2110/jsr.2018.19

    CrossRef Google Scholar

    [4] 杜伟维, 石媛媛, 洪才均, 2017. 塔河油田石炭系卡拉沙依组勘探有利区带精细评价[J]. 石油实验地质, 39(4): 580−586

    Google Scholar

    Du W W, Shi Y Y, Hong C J. 2017. A fine scale assessment of favorable exploration areas in the Carboniferous Kalashayi Formation in the Tahe oil field[J]. Petroleum Geology & Experiment, 39(4): 580−586.

    Google Scholar

    [5] 樊怀阳, 陈文, 刘百春, 2004. 塔河油田卡拉沙依组砂组沉积相与储层研究[J]. 新疆地质, 22(4): 417-421 doi: 10.3969/j.issn.1000-8845.2004.04.016

    CrossRef Google Scholar

    Fan H Y, Chen W, Liu B C, 2004. Kalashayi Formation Reserve and Comprehensive Evaluation in Tahe Oil Field[J]. Xinjiang Geology, 22(04): 417-421. doi: 10.3969/j.issn.1000-8845.2004.04.016

    CrossRef Google Scholar

    [6] 顾家裕, 张兴阳, 郭彬程, 2006. 塔里木盆地东河砂岩沉积和储层特征及综合分析[J]. 古地理学报, 8(3): 285-294 doi: 10.3969/j.issn.1671-1505.2006.03.002

    CrossRef Google Scholar

    Gu J Y, Zhang X Y, Guo B C, 2006. Characteristics of Sedimentary and Reservoir of the Donghe Sandstone in Tarim Basin and Their Synthetic Analysis[J]. Journal of Palaeogeography, 8(3): 285-294. doi: 10.3969/j.issn.1671-1505.2006.03.002

    CrossRef Google Scholar

    [7] 郭齐军, 赵省民, 2002. 塔河地区石炭系沉积特征[J]. 石油与天然气地质, 23(1): 99-102 doi: 10.3321/j.issn:0253-9985.2002.01.022

    CrossRef Google Scholar

    Guo Q J, Zhao S M, 2002. Depositional Characteristics of Carboniferous in Tahe Region[J]. Oil & Gas Geology, 23(1): 99-102. doi: 10.3321/j.issn:0253-9985.2002.01.022

    CrossRef Google Scholar

    [8] 何发岐, 翟晓先, 俞仁连, 等, 2004. 塔河油田石炭系卡拉沙依组沉积与成因分析[J]. 石油与天然气地质, 25(3): 258-262 doi: 10.3321/j.issn:0253-9985.2004.03.004

    CrossRef Google Scholar

    He F Q, Zhai X X, Yu R L, et al. , 2004. Deposition and Genetic Analysis of Carboniferous Kalashayi Formation in Tahe Oilfield[J]. Oil & Gas Geology, 25(03): 258-262. doi: 10.3321/j.issn:0253-9985.2004.03.004

    CrossRef Google Scholar

    [9] 胡小龙, 2017. 南天山洋闭合时限[D]. 成都: 成都理工大学.

    Google Scholar

    Hu X L, 2017. The Closure of the South Tianshan Ocean[D]. Cheng Du: Cheng Du University of Technology.

    Google Scholar

    [10] Ichaso A A, Dalrymple R W, Martinius A W, 2016. Basin analysis and sequence stratigraphy of the synrift Tilje Formation (Lower Jurassic), Halten terrace giant oil and gas fields, offshore mid-Norway[J]. AAPG Bulletin, 100(8): 1329–1375. doi: 10.1306/02251614081

    CrossRef Google Scholar

    [11] 贾承造, 魏国齐, 2002. 塔里木盆地构造特征与含油气性[J]. 科学通报, 47(S1): 1-8

    Google Scholar

    Jia C Z, Wei G Q, 2002. Structural Characteristics and Petroleum potential of Tarim Basin[J]. Chinese Science Bulletin, 47(S1): 1-8.

    Google Scholar

    [12] 贾进华, 2019. 古海岸带碎屑潮汐环境沉积微相与砂体分布——以塔中地区志留系为例[J]. 中国矿业大学学报, 48(1): 110-123 doi: 10.13247/j.cnki.jcumt.000915

    CrossRef Google Scholar

    Jia J H, 2019. Sedimentary microfacies and sandbody distribution in the clastic tidal environment of the ancient coastal zone: A case study of Silurian in Tazhong area, Tarim basin[J]. Journal of China University of Mining & Technology, 48(1): 110-123. doi: 10.13247/j.cnki.jcumt.000915

    CrossRef Google Scholar

    [13] Kumar P, Devi K L, Chakraborty P P, et al. , 2022. Depositional architecture of sub-aqueous part of a tide-dominated delta and its palaeogeographic implications: Laisong Formation (Barail Group), Indo-Myanmar Ranges, western Manipur[J]. Journal of Earth System Science, 131: 103. doi: 10.1007/s12040-022-01843-y

    CrossRef Google Scholar

    [14] Kurcinka C, Dalrymple R W, Gugliotta M, 2018. Facies and architecture of river-dominated to tide-influenced mouth bars in the lower Lajas Formation (Jurassic), Argentina[J]. AAPG Bulletin, 102(5): 885–912. doi: 10.1306/0609171618917155

    CrossRef Google Scholar

    [15] Li S Z, Zhao S J, Liu X, et al. , 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-35. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [16] 李永宏, 闫相宾, 张涛, 等, 2004. 塔河油田石炭系卡拉沙依组储层特征及其控制因素[J]. 石油实验地质, 26(1): 17-22+27 doi: 10.3969/j.issn.1001-6112.2004.01.003

    CrossRef Google Scholar

    Li Y H, Yan X B, Zhang T, et al. , 2004. Reservoir Characteristics and Their Controlling Factors of Kalashayi Carboniferous Formation in Tahe Oilfield[J]. Petroleum Geology & Experiment, 26(1): 17-22+27. doi: 10.3969/j.issn.1001-6112.2004.01.003

    CrossRef Google Scholar

    [17] 刘慧盈, 陈和平, 张克鑫, 等, 2017. 厄瓜多尔Oriente盆地北部区块T段地层沉积演化特征[J]. 中国海上油气, 29(2): 53-62

    Google Scholar

    Liu H Y, Chen H P, Zhang K X, et al. , 2017. Sedimentary evolution characteristics of T Member in north block, Oriente basin, Ecuador[J]. China Offshore Oil and Gas, 29(2): 53-62.

    Google Scholar

    [18] 刘占红, 陈荣, 宋成兵, 等, 2012. 塔里木盆地石炭系卡拉沙依组旋回地层与层序地层综合研究[J]. 地球科学(中国地质大学学报), 37(5): 1051-1065

    Google Scholar

    Liu Z H. Chen R, Song C B, et al. , 2012. Cyclostratigraphy and Sequence Stratigraphy on Carboniferous Karashayi Formation of Tarim Basin, China[J]. Earth Science- Journal of China University of Geosciences, 37(5): 1051-1065.

    Google Scholar

    [19] 马虎戎, 2017. 塔河南部石炭系卡拉沙依组储层特征及主控因素[D]. 成都: 西南石油大学.

    Google Scholar

    Ma H R, 2017. Reservoir Characteristics and Main Controlling Factors of Carboniferous Kalashayi Formation in Southern Tarim Basin[D]. Chengdu: Southwest Petroleum University.

    Google Scholar

    [20] Manshor N A, Amir Hassan M H, Madon M H, 2022. Tidally-influenced fluvial channel systems from the Miocene Malay Basin, Malaysia: Evidence from core facies and seismic geomorphological analyses[J]. Marine and Petroleum Geology, 135: 105384-1-105384-22. doi: 10.1016/j.marpetgeo.2021.105384

    CrossRef Google Scholar

    [21] 彭旸, 龚承林, 李顺利, 2022. 河流—波浪—潮汐混合作用过程研究进展[J]. 沉积学报, 40(4): 957-978 doi: 10.14027/j.issn.1000-0550.2021.154

    CrossRef Google Scholar

    Peng Y, Gong C L, Li S L, 2022. Recent Advances in River-Wave-Tide Mixed Processes[J]. Acta Sedimentologica Sinica, 40(4): 957-978. doi: 10.14027/j.issn.1000-0550.2021.154

    CrossRef Google Scholar

    [22] Rosenstein E S, 1990. The claresholm gas field - A significant gas pool in the deep portion of the southern Alberta basin[J]. Bulletin of Canadian Petroleum Geology, 38(1): 178-179.

    Google Scholar

    [23] Rossi V M, Steel R J, 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina)[J]. Sedimentology, 63(4): 824-864. doi: 10.1111/sed.12240

    CrossRef Google Scholar

    [24] Tänavsuu-Milkeviciene K, Plink-Björklund P, 2009. Recognizing Tide-Dominated Versus Tide-Influenced Deltas: Middle Devonian Strata of the Baltic Basin[J]. Journal of Sedimentary Research, 79(12): 887–905. doi: 10.2110/jsr.2009.096

    CrossRef Google Scholar

    [25] 田军, 王清华, 杨海军, 等, 2021. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 42(3): 272-282

    Google Scholar

    Tian J, Wang Q H, Yang H J, et al. , 2021. Petroleum Exploration History and Enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 42(3): 272-282.

    Google Scholar

    [26] 王大锐, 白玉雷, 贾承造, 2001. 塔里木盆地油区石炭系海相碳酸盐岩同位素地球化学研究[J]. 石油勘探与开发, (6): 38-41+14-13+6 doi: 10.3321/j.issn:1000-0747.2001.06.011

    CrossRef Google Scholar

    Wang D R, Bai Y L, Jia C Z, 2001. Stable isotopic geochemistry of the Carboniferous marine carbonates in the Tarim basin[J]. Petroleum Exploration and Development, (6): 38-41+14-13+6. doi: 10.3321/j.issn:1000-0747.2001.06.011

    CrossRef Google Scholar

    [27] 王少立, 宋杉林, 2001. 塔里木盆地北部阿克库勒凸起石炭系沉积特征[J]. 新疆石油学院学报, 13(1): 17-21

    Google Scholar

    Wang S L, Song S L, 2001. The Sedimentary Characteristics of Carboniferous in Akekule Heave in Northern Tarim Basin[J]. Xinjiang Oil & Gas, 13(1): 17-21.

    Google Scholar

    [28] 邬光辉, 李浩武, 徐彦龙, 等, 2012. 塔里木克拉通基底古隆起构造-热事件及其结构与演化[J]. 岩石学报, 28(8): 2435-2452

    Google Scholar

    Wu G H, Li H W, Xu Y L, et al. , 2012. The tectonothermal events, architecture and evolution of Tarim craton basement palaeo-uplifts[J]. Acta Petrologica Sinica, 28(8): 2435-2452.

    Google Scholar

    [29] 邬光辉, 邓卫, 黄少英, 等, 2020. 塔里木盆地构造—古地理演化[J]. 地质科学, 55(2): 305-321 doi: 10.12017/dzkx.2020.020

    CrossRef Google Scholar

    Wu G H, Deng W, Huang S Y, et al. , 2020. Tectonic-paleogeographic evolution in the Tarim Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica), 55(2): 305-321. doi: 10.12017/dzkx.2020.020

    CrossRef Google Scholar

    [30] 吴其林, 傅恒, 黄海平, 等, 2008. 塔里木盆地塔河地区下石炭统巴楚组沉积演化[J]. 沉积与特提斯地质, 28(3): 79-83 doi: 10.3969/j.issn.1009-3850.2008.03.014

    CrossRef Google Scholar

    Wu Q L, Fu H, Huang H P, et al. , 2008. Sedimentary evolution of the Lower Carboniferous Bachu Formation in the Tarim River area, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 28(3): 79-83. doi: 10.3969/j.issn.1009-3850.2008.03.014

    CrossRef Google Scholar

    [31] 徐微, 王明, 田鹏, 等, 2011. 塔河油田石炭系卡拉沙依组层序地层及沉积相研究[J]. 沉积与特提斯地质, 31(4): 1-10 doi: 10.3969/j.issn.1009-3850.2011.04.001

    CrossRef Google Scholar

    Xu W, Wang M, Tian P, et al. , 2011. Sequence Stratigraphy and Sedimentary Facies of the Carboniferous Kalashayi Formation in the Tahe Oil Field[J]. Sedimentary Geology and Tethyan Geology, 31(4): 1-10. doi: 10.3969/j.issn.1009-3850.2011.04.001

    CrossRef Google Scholar

    [32] Zhang L Q, Li Z X, Luo X R, 2020. Sedimentary-diagenetic characteristics and heterogeneity models of sandstone reservoirs: An example of Silurian Kalpintage Formation, Northwestern Tarim Basin, China[J]. Marine and Petroleum Geology, 118: 1-9.

    Google Scholar

    [33] 张福顺, 瞿长, 2019. 受潮汐影响的缓坡三角洲有利砂体叠置样式——以塔河油田石炭系卡拉沙依组为例[J]. 东北石油大学学报, 43(3): 33-42+7 doi: 10.3969/j.issn.2095-4107.2019.03.004

    CrossRef Google Scholar

    Zhang F S, Qu C, 2019. Superimpodition Patterns of Favorable Sandbodies in Gentle-slope Delta Affected by Tides: A Case Study of the Carboniferous Karashayi Formation in Tahe Oilfield[J]. Journal of Northeast Petroleum University, 43(3): 33-42+7. doi: 10.3969/j.issn.2095-4107.2019.03.004

    CrossRef Google Scholar

    [34] 张旺, 2018. 桑塔木地区石炭系卡拉沙依组砂体成因与展布研究[D]. 北京: 中国石油大学.

    Google Scholar

    Zhang W, 2018. Sandbody genesis and distribution research of Kalashayi Formation in Sangtamu area[D]. Beijing: China University of Petroleum.

    Google Scholar

    [35] 赵霞飞, 胡东风, 张闻林, 等, 2013. 四川盆地元坝地区上三叠统须家河组的潮控河口湾与潮控三角洲沉积[J]. 地质学报, 87(11): 1748-1762 doi: 10.19762/j.cnki.dizhixuebao.2013.11.009

    CrossRef Google Scholar

    Zhao X F, Hu D F, Zhang W L, et al. , 2013. Tide-Dominated Estuarine and Deltaic Deposition of the Upper-Triassic Xujiahe Formation in the Yuanba Area, Sichuan Basin[J]. Acta Geologica Sinica, 87(11): 1748-1762. doi: 10.19762/j.cnki.dizhixuebao.2013.11.009

    CrossRef Google Scholar

    [36] 赵霞飞, 吕宗刚, 张闻林, 等, 2008. 四川盆地安岳地区须家河组——近海潮汐沉积[J]. 天然气工业, (4): 14-18+134 doi: 10.3787/j.issn.1000-0976.2008.04.004

    CrossRef Google Scholar

    Zhao X F, Lv Z G, Zhang W L, et al. , 2008. Paralic Tidal Deposits In The Upper Triassic Xujiahe Formation In Anyue Area, The Sichuan Basin[J]. Natural Gas Industry, (4): 14-18+134. doi: 10.3787/j.issn.1000-0976.2008.04.004

    CrossRef Google Scholar

    [37] 赵霞飞, 赵拓宇, 张闻林, 2019. 潮汐韵律岩研究进展及对须家河组沉积相的启示[J]. 天然气勘探与开发, 42(2): 29-38

    Google Scholar

    Zhao X F, Zhao T Y, Zhang W L, 2019. An Introduction to the Developments of Tidal Rhythmite Studies and its Implication to the Natual Gas Exploration of Xujiahe Formation[J]. Natural Gas Exploration and Development, 42(2): 29-38.

    Google Scholar

    [38] 钟大康, 漆立新, 刘康宁, 等, 2009. 塔河油田南部石炭系卡拉沙依组沉积相研究[J]. 沉积学报, 27(4): 614-621 doi: 10.14027/j.cnki.cjxb.2009.04.014

    CrossRef Google Scholar

    Zhong D K, Qi L X, Liu K N, et al. , 2009. Study on Sedimentary Facies of Carboniferous Kalashayi Formation in the South of Tahe Oilfield[J]. Acta Sedimentologica Sinica, 27(4): 614-621. doi: 10.14027/j.cnki.cjxb.2009.04.014

    CrossRef Google Scholar

    [39] 周江羽, 吕海涛, 石媛媛, 等, 2022. 塔北古生界滨岸相混控碎屑岩体系沉积学和沉积模式[J]. 地质学报, 96(4): 1125-1142 doi: 10.19762/j.cnki.dizhixuebao.2022016

    CrossRef Google Scholar

    Zhou J T, Lv G T, Shi Y Y, et al. , 2022. Sedimentology and depositional model of a mixed fluvial, wave-and tide-influenced Paleozoic clastic coastal system in the northern Tarim basin[J]. Acta Geologica Sinica, 96(4): 1125-1142. doi: 10.19762/j.cnki.dizhixuebao.2022016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(578) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint