|
Assonov S, Gröning M, Fajgelj A, 2015. IAEA stable isotope reference materials: Addressing the needs of atmospheric greenhouse gas monitoring[C]/The 18th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related tracers measurement techniques (GGMT-2015).California: GAW Report No.229:76-80.
Google Scholar
|
|
Assonov S, 2018. Summary and recommendations from the international atomic energy agency technical meeting on the development of stable isotope reference products (21-25 November 2016)[J].Rapid Communications in Mass Spectrometry,32(10):827-830.
Google Scholar
|
|
Assonov S, Groening M, Fajgelj A, et al., 2020a. Preparation and characterization of IAEA-603,a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination[J].Rapid Communications in Mass Spectrometry,34(20):e8867.
Google Scholar
|
|
Assonov S, Fajgelj A, Helie J F, et al., 2020b. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty[J]. Rapid Communications in Mass Spectrometry, 35(7):e9014.
Google Scholar
|
|
Brand W A, Coplen T B, Vogl J, et al., 2014. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report)[J].Pure and Applied Chemistry, 86(3):425-467.
Google Scholar
|
|
Craig H, 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide[J]. Geochimica Et Cosmochimica Acta, 12(1-2):133-149.
Google Scholar
|
|
Crowley S F, 2010. Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS19, and reference materials NBS18, IAEA-CO-1 and IAEA-CO-8[J]. Geostandards and Geoanalytical Research,34(2):193-206.
Google Scholar
|
|
Chen L, Liu Y, Hu Z, et al., 2011. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology,284, 283-295.
Google Scholar
|
|
Dijk I, Mouret A, Cotte M, et al., 2019. Chemical Heterogeneity of Mg, Mn, Na, S, and Sr in Benthic Foraminiferal Calcite[J]. Frontiers in Earth Science, 7:281.
Google Scholar
|
|
Dunn P J H, Malinovsky D, Goenaga‐Infante H, 2020. Calibration hierarchies for light element isotope delta reference materials[J]. Rapid Communications in Mass Spectrometry, 34(9): e8711.
Google Scholar
|
|
Fernández B, Claverie F, Pécheyran C, et al., 2007. Direct analysis of solid samples by fs-LA-ICP-MS [J].Trends in Analytical Chemistry,26(10):951-966.
Google Scholar
|
|
Friedman I, O’Neil J, Cebula G, 1982. Two new carbonate stable isotope standards[J]. Geostandard Newsletter, 6(1):11-12
Google Scholar
|
|
Godeau N, Deschamps P, Guihou A, et al., 2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. The geological society of America, 46 (3): 247-250.
Google Scholar
|
|
Helie J F, Hillaire-Marcel C, 2021. Designing working standards for stable H, C and O isotope measurements in CO2 and H2O[J].Rapid Communications in Mass Spectrometry,35(5):e9008.
Google Scholar
|
|
Ishimura T, Tsunogai U, Nakagawa F, 2008. Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS19, NBS18, IAEA-CO-1, and IAEA-CO-8)[J]. Rapid Communications in Mass Spectrometry, 22(12):1925-1932.
Google Scholar
|
|
Jochum K P, Nohl U, Herwig K, et al., 2005. GeoReM:A new geochemical database for reference materials and isotopic standards[J].Geostandards and Geoanalytical Research,29(3):333-338.
Google Scholar
|
|
Jochum K P, Scholz D, Stoll B, et al., 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 31-44:318-319.
Google Scholar
|
|
Jochum K P, Garbe-Schönberg D, Veter M, et al., 2019. Nano‐Powdered Calcium Carbonate Reference Materials: Significant Progress for Microanalysis?[J]. Geostandards and Geoanalytical Research,43(4):595-609.
Google Scholar
|
|
Lazartigues A V, Sirois P, Savard D, 2014. LA-ICP-MS Analysis of Small Samples: Carbonate Reference Materials and Larval Fish Otoliths[J]. Geostandards and Geoanalytical Research, 38(2):225-240.
Google Scholar
|
|
Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICPMS without applying an internal standard[J].Chemical Geology,257(1-2):34-43.
Google Scholar
|
|
Meier-Augenstein W, SchimmelmannA, 2019. A guide for proper utilisation of stable isotope reference materials[J]. Isotopes in Environmental and Health Studies, 55(1-3):113-128.
Google Scholar
|
|
Nikonow W, Rammlmair D,2016. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping[J]. Spectrochimica Acta Part B,125:120-126.
Google Scholar
|
|
Nishida K, Ishimura T, 2017. Grain-scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA-603[J]. Rapid Communications in Mass Spectrometry,31(22):1875-1880.
Google Scholar
|
|
Robert N M W, Rasbury E T, Parrish R R, et al., 2017.A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems,18(7):2807-2814.
Google Scholar
|
|
Stichler W,1995. Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurement[R]//Reference and intercomparison materials for stable isotopes of light elements. Vienna: International Atomic Energy Agency (IAEA-TECDOC-825),67-74.
Google Scholar
|
|
Tang G Q, Li X H, Li Q L, et al., 2019. A new Chinese national reference material (GBW04481) for calcite oxygen and carbon isotopic microanalysis[J]. Surface and Interface Analysis,52(5):190-196.
Google Scholar
|
|
Thomazo C, Sansjofre P, Musset O, et al., 2021. In situ carbon and oxygen isotopes measurements in carbonates by fiber coupled laser diode-induced calcination: A step towards field isotopic characterization[J]. Chemical Geology, 578.
Google Scholar
|
|
Vansteenberge S, Winter N J, Sinnesael M, et al.,2020. Benchtop μXRF as a tool for speleothem trace elemental analysis: Validation, limitations and application on an Eemian to early Weichselian (125-97ka) stalagmite from Belgium[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,538: 109460.
Google Scholar
|
|
Wang H A O, Grolimund D, Loon L V R, et al., 2011. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy[J]. Analytical Chemistry, 83(16):6259.
Google Scholar
|
|
Weber M, Lugli F, Hattendorf B, et al., 2019. NanoSr-a new carbonate microanalytical reference material for in situ strontium isotope analysis[J]. Geostandards and Geoanalytical Research, 44(1):69-83.
Google Scholar
|
|
Winter N J D, Sinnesael M, Makarona C, et al., 2017. Trace element analyses of carbonates using portable and micro-X-ray fluorescence: performance and optimization of measurement parameters andstrategies[J]. Journal of Analytical Atomic Spectrometry, 32:1211.
Google Scholar
|
|
毕哲,周泽义,刘紫譞,等, 2018.二氧化碳同位素标准物质研究进展[J].化学分析计量, 27(5): 122-126.
Google Scholar
|
|
程婷, Zhao J X, Feng Y X,等, 2020. 低铀碳酸盐矿物的 LA-MC-ICPMS 微区原位 U-Pb 定年方法[J]. 科学通报, 65: 150-154.
Google Scholar
|
|
丁悌平, 2002. 稳定同位素测试技术与参考物质研究现状及发展趋势[J].岩矿测试, 21(4): 291-300.
Google Scholar
|
|
何道清, 1997. 激光微取样稳定同位素分析新技术[J].石油仪器,11(5):41-44.
Google Scholar
|
|
何佳乐, 潘忠习, 冉敬, 2016. 激光拉曼光谱在岩矿鉴定中的应用[J]. 四川地质学报 (2):346-349.
Google Scholar
|
|
侯可军, 秦燕, 李延河,等, 2013. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 32(4):547-554.
Google Scholar
|
|
胡志中,李佩,蒋璐蔓,等, 2020a. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J].岩矿测试, 39(4):505-514.
Google Scholar
|
|
胡志中, 王坤阳, 晏雄,等, 2020b. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究[J]. 岩矿测试, 39(6): 804-815.
Google Scholar
|
|
胡志中,晏雄,王坤阳,等, 2021.碳酸盐碳氧同位素标准物质性状对分析和保存的影响[J].岩矿测试, 40(4):476-490.
Google Scholar
|
|
蓝廷广,胡瑞忠,范宏瑞,等, 2017. 流体包裹体及石英 LA-ICP-MS 分析方法的建立及其在矿床学中的应用[J].岩石学报, 33(10): 3239-3262.
Google Scholar
|
|
林梵宇,尹希杰,黄威,等, 2021.利用微区XRF技术的大洋固体矿产成分快速无损检测[J].海洋地质与第四纪地质,41(1): 223-232.
Google Scholar
|
|
刘勇胜,胡兆初,李明,等, 2013. LA-ICP-MS在地质样品元素分析中的应用[J].科学通报,58(36):3753-3769.
Google Scholar
|
|
罗平,苏立萍,罗忠,等, 2006. 激光显微取样技术在川东北飞仙关组鲕粒白云岩碳氧同位素特征研究中的应用[J].地球化学,35(3):325-330.
Google Scholar
|
|
王凤玉,胡志中,杜谷, 2014. X射线衍射法在有机药物研究中的运用[J].资源开发与市场,30(9):1030-1031.
Google Scholar
|
|
王辉,汪方跃,盛兆秋, 2019a.LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J].岩石矿物学杂志,38(1):115-122.
Google Scholar
|
|
王辉, 汪方跃, 关炳庭, 等, 2019b.激光能量密度对LA-ICP-MS分析数据质量的影响研究[J].岩矿测试,38(6):609-619.
Google Scholar
|
|
王坤阳, 杜谷, 杨玉杰, 等, 2014. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J].岩矿测试, 33(5):634-639.
Google Scholar
|
|
吴石头, 王亚平, 许春雪, 2015. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 34(5): 503-511.
Google Scholar
|
|
吴石头, 许春雪, Klaus S, 等, 2017. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试,36(5):451-459.
Google Scholar
|
|
于吉顺, 雷新荣, 张锦化, 等, 2011.矿物X射线粉晶鉴定手册(图谱)[M].武汉:华中科技大学出版社.
Google Scholar
|
|
张乐, 任钟元, 丁相礼,等, 2014. 微钻取样-TIMS/MC-ICPMS和LA-MC-ICPMS分析矿物岩石87Sr/86Sr比值的技术比较[J]. 岩矿测试, 33(5): 615-624.
Google Scholar
|
|
赵珊茸, 边秋娟, 凌其聪, 2004. 结晶学及矿物学[M].北京:高等教育出版社,313.
Google Scholar
|
|
杨岳衡, 吴福元, 谢烈文,等, 2009. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 25(12):331-341.
Google Scholar
|
|
郑永飞, 陈江峰, 2000. 稳定同位素地球化学[M].北京:科学出版社.
Google Scholar
|