2022 Vol. 42, No. 4
Article Contents

HU Zhizhong, YAN Xiong, DU Gu, WANG Guan, XU Guodong, HE Jiale, JIN Lu, LAN Mingguo, HE Xiuhui. 2022. The Calcite 811N, a potential isotope standard material for isotopic analyses of carbon, oxygen and strontium. Sedimentary Geology and Tethyan Geology, 42(4): 542-555. doi: 10.19826/j.cnki.1009-3850.2022.09004
Citation: HU Zhizhong, YAN Xiong, DU Gu, WANG Guan, XU Guodong, HE Jiale, JIN Lu, LAN Mingguo, HE Xiuhui. 2022. The Calcite 811N, a potential isotope standard material for isotopic analyses of carbon, oxygen and strontium. Sedimentary Geology and Tethyan Geology, 42(4): 542-555. doi: 10.19826/j.cnki.1009-3850.2022.09004

The Calcite 811N, a potential isotope standard material for isotopic analyses of carbon, oxygen and strontium

More Information
  • Corresponding author: DU Gu  
  • The isotope standard materials are important in analyzing isotopic compositions in a lab. The Calcite 811 has been a laboratory standard material for analyses of isotopic compositions of carbon and oxygen isotope of carbonate, but it was made a long time ago and its stock on hand is decreasing day by day, and its current quality situation is usually unclear. This study selects the un-used Calcite 811 as a research object, using a variety of analysis techniques such as the LA-(MC)-ICP-MS, laser Raman spectroscopy, XRD and EDX-SEM, to study its mineral, chemical, and isotopic compositions, in order to find a method for making a new isotope standard material, the Calcite 811N, to substitute the Calcite 811 in the future. The results show that the Calcite 811N is almost composed of calcite, containing few dolomite, needle-shaped iron ore, and clay minerals. Apart from its main chemical compositions of CaCO3, the Calcite 811N has trace amounts of elements such as Mg, Mn, Sr, Si, REE, U, and Th. As a whole, the contents of Mg, Mn, Sr are somewhat changeable, but they are relatively uniform in a small scope. The carbon isotopic and oxygen isotopic results are little different, the difference of which is consistent with the uniformity of distrubution of Mg,Mn,Sr. Isotopic compositions of carbon and oxygen are homogeneous in the main region of the Calcite 811N. The isotopic compositions of Sr have no significant differences in different parts. The δ13C and δ18O of Calcite 811N are changeable on the whole, but their differences are very small. So concluded that the Calcite 811N is a suitable isotopic standard material for situ and micro isotopic analyses of carbon, oxygen, and strontium of carbonate.
  • 加载中
  • Assonov S, Gröning M, Fajgelj A, 2015. IAEA stable isotope reference materials: Addressing the needs of atmospheric greenhouse gas monitoring[C]/The 18th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related tracers measurement techniques (GGMT-2015).California: GAW Report No.229:76-80.

    Google Scholar

    Assonov S, 2018. Summary and recommendations from the international atomic energy agency technical meeting on the development of stable isotope reference products (21-25 November 2016)[J].Rapid Communications in Mass Spectrometry,32(10):827-830.

    Google Scholar

    Assonov S, Groening M, Fajgelj A, et al., 2020a. Preparation and characterization of IAEA-603,a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination[J].Rapid Communications in Mass Spectrometry,34(20):e8867.

    Google Scholar

    Assonov S, Fajgelj A, Helie J F, et al., 2020b. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty[J]. Rapid Communications in Mass Spectrometry, 35(7):e9014.

    Google Scholar

    Brand W A, Coplen T B, Vogl J, et al., 2014. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report)[J].Pure and Applied Chemistry, 86(3):425-467.

    Google Scholar

    Craig H, 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide[J]. Geochimica Et Cosmochimica Acta, 12(1-2):133-149.

    Google Scholar

    Crowley S F, 2010. Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS19, and reference materials NBS18, IAEA-CO-1 and IAEA-CO-8[J]. Geostandards and Geoanalytical Research,34(2):193-206.

    Google Scholar

    Chen L, Liu Y, Hu Z, et al., 2011. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology,284, 283-295.

    Google Scholar

    Dijk I, Mouret A, Cotte M, et al., 2019. Chemical Heterogeneity of Mg, Mn, Na, S, and Sr in Benthic Foraminiferal Calcite[J]. Frontiers in Earth Science, 7:281.

    Google Scholar

    Dunn P J H, Malinovsky D, Goenaga‐Infante H, 2020. Calibration hierarchies for light element isotope delta reference materials[J]. Rapid Communications in Mass Spectrometry, 34(9): e8711.

    Google Scholar

    Fernández B, Claverie F, Pécheyran C, et al., 2007. Direct analysis of solid samples by fs-LA-ICP-MS [J].Trends in Analytical Chemistry,26(10):951-966.

    Google Scholar

    Friedman I, O’Neil J, Cebula G, 1982. Two new carbonate stable isotope standards[J]. Geostandard Newsletter, 6(1):11-12

    Google Scholar

    Godeau N, Deschamps P, Guihou A, et al., 2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. The geological society of America, 46 (3): 247-250.

    Google Scholar

    Helie J F, Hillaire-Marcel C, 2021. Designing working standards for stable H, C and O isotope measurements in CO2 and H2O[J].Rapid Communications in Mass Spectrometry,35(5):e9008.

    Google Scholar

    Ishimura T, Tsunogai U, Nakagawa F, 2008. Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS19, NBS18, IAEA-CO-1, and IAEA-CO-8)[J]. Rapid Communications in Mass Spectrometry, 22(12):1925-1932.

    Google Scholar

    Jochum K P, Nohl U, Herwig K, et al., 2005. GeoReM:A new geochemical database for reference materials and isotopic standards[J].Geostandards and Geoanalytical Research,29(3):333-338.

    Google Scholar

    Jochum K P, Scholz D, Stoll B, et al., 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 31-44:318-319.

    Google Scholar

    Jochum K P, Garbe-Schönberg D, Veter M, et al., 2019. Nano‐Powdered Calcium Carbonate Reference Materials: Significant Progress for Microanalysis?[J]. Geostandards and Geoanalytical Research,43(4):595-609.

    Google Scholar

    Lazartigues A V, Sirois P, Savard D, 2014. LA-ICP-MS Analysis of Small Samples: Carbonate Reference Materials and Larval Fish Otoliths[J]. Geostandards and Geoanalytical Research, 38(2):225-240.

    Google Scholar

    Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICPMS without applying an internal standard[J].Chemical Geology,257(1-2):34-43.

    Google Scholar

    Meier-Augenstein W, SchimmelmannA, 2019. A guide for proper utilisation of stable isotope reference materials[J]. Isotopes in Environmental and Health Studies, 55(1-3):113-128.

    Google Scholar

    Nikonow W, Rammlmair D,2016. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping[J]. Spectrochimica Acta Part B,125:120-126.

    Google Scholar

    Nishida K, Ishimura T, 2017. Grain-scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA-603[J]. Rapid Communications in Mass Spectrometry,31(22):1875-1880.

    Google Scholar

    Robert N M W, Rasbury E T, Parrish R R, et al., 2017.A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems,18(7):2807-2814.

    Google Scholar

    Stichler W,1995. Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurement[R]//Reference and intercomparison materials for stable isotopes of light elements. Vienna: International Atomic Energy Agency (IAEA-TECDOC-825),67-74.

    Google Scholar

    Tang G Q, Li X H, Li Q L, et al., 2019. A new Chinese national reference material (GBW04481) for calcite oxygen and carbon isotopic microanalysis[J]. Surface and Interface Analysis,52(5):190-196.

    Google Scholar

    Thomazo C, Sansjofre P, Musset O, et al., 2021. In situ carbon and oxygen isotopes measurements in carbonates by fiber coupled laser diode-induced calcination: A step towards field isotopic characterization[J]. Chemical Geology, 578.

    Google Scholar

    Vansteenberge S, Winter N J, Sinnesael M, et al.,2020. Benchtop μXRF as a tool for speleothem trace elemental analysis: Validation, limitations and application on an Eemian to early Weichselian (125-97ka) stalagmite from Belgium[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,538: 109460.

    Google Scholar

    Wang H A O, Grolimund D, Loon L V R, et al., 2011. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy[J]. Analytical Chemistry, 83(16):6259.

    Google Scholar

    Weber M, Lugli F, Hattendorf B, et al., 2019. NanoSr-a new carbonate microanalytical reference material for in situ strontium isotope analysis[J]. Geostandards and Geoanalytical Research, 44(1):69-83.

    Google Scholar

    Winter N J D, Sinnesael M, Makarona C, et al., 2017. Trace element analyses of carbonates using portable and micro-X-ray fluorescence: performance and optimization of measurement parameters andstrategies[J]. Journal of Analytical Atomic Spectrometry, 32:1211.

    Google Scholar

    毕哲,周泽义,刘紫譞,等, 2018.二氧化碳同位素标准物质研究进展[J].化学分析计量, 27(5): 122-126.

    Google Scholar

    程婷, Zhao J X, Feng Y X,等, 2020. 低铀碳酸盐矿物的 LA-MC-ICPMS 微区原位 U-Pb 定年方法[J]. 科学通报, 65: 150-154.

    Google Scholar

    丁悌平, 2002. 稳定同位素测试技术与参考物质研究现状及发展趋势[J].岩矿测试, 21(4): 291-300.

    Google Scholar

    何道清, 1997. 激光微取样稳定同位素分析新技术[J].石油仪器,11(5):41-44.

    Google Scholar

    何佳乐, 潘忠习, 冉敬, 2016. 激光拉曼光谱在岩矿鉴定中的应用[J]. 四川地质学报 (2):346-349.

    Google Scholar

    侯可军, 秦燕, 李延河,等, 2013. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 32(4):547-554.

    Google Scholar

    胡志中,李佩,蒋璐蔓,等, 2020a. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J].岩矿测试, 39(4):505-514.

    Google Scholar

    胡志中, 王坤阳, 晏雄,等, 2020b. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究[J]. 岩矿测试, 39(6): 804-815.

    Google Scholar

    胡志中,晏雄,王坤阳,等, 2021.碳酸盐碳氧同位素标准物质性状对分析和保存的影响[J].岩矿测试, 40(4):476-490.

    Google Scholar

    蓝廷广,胡瑞忠,范宏瑞,等, 2017. 流体包裹体及石英 LA-ICP-MS 分析方法的建立及其在矿床学中的应用[J].岩石学报, 33(10): 3239-3262.

    Google Scholar

    林梵宇,尹希杰,黄威,等, 2021.利用微区XRF技术的大洋固体矿产成分快速无损检测[J].海洋地质与第四纪地质,41(1): 223-232.

    Google Scholar

    刘勇胜,胡兆初,李明,等, 2013. LA-ICP-MS在地质样品元素分析中的应用[J].科学通报,58(36):3753-3769.

    Google Scholar

    罗平,苏立萍,罗忠,等, 2006. 激光显微取样技术在川东北飞仙关组鲕粒白云岩碳氧同位素特征研究中的应用[J].地球化学,35(3):325-330.

    Google Scholar

    王凤玉,胡志中,杜谷, 2014. X射线衍射法在有机药物研究中的运用[J].资源开发与市场,30(9):1030-1031.

    Google Scholar

    王辉,汪方跃,盛兆秋, 2019a.LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J].岩石矿物学杂志,38(1):115-122.

    Google Scholar

    王辉, 汪方跃, 关炳庭, 等, 2019b.激光能量密度对LA-ICP-MS分析数据质量的影响研究[J].岩矿测试,38(6):609-619.

    Google Scholar

    王坤阳, 杜谷, 杨玉杰, 等, 2014. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J].岩矿测试, 33(5):634-639.

    Google Scholar

    吴石头, 王亚平, 许春雪, 2015. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 34(5): 503-511.

    Google Scholar

    吴石头, 许春雪, Klaus S, 等, 2017. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试,36(5):451-459.

    Google Scholar

    于吉顺, 雷新荣, 张锦化, 等, 2011.矿物X射线粉晶鉴定手册(图谱)[M].武汉:华中科技大学出版社.

    Google Scholar

    张乐, 任钟元, 丁相礼,等, 2014. 微钻取样-TIMS/MC-ICPMS和LA-MC-ICPMS分析矿物岩石87Sr/86Sr比值的技术比较[J]. 岩矿测试, 33(5): 615-624.

    Google Scholar

    赵珊茸, 边秋娟, 凌其聪, 2004. 结晶学及矿物学[M].北京:高等教育出版社,313.

    Google Scholar

    杨岳衡, 吴福元, 谢烈文,等, 2009. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 25(12):331-341.

    Google Scholar

    郑永飞, 陈江峰, 2000. 稳定同位素地球化学[M].北京:科学出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1479) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint