Amaefule J O, Altunbay M, Tiab D, et al., 1993.Enhanced reservoir description:using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[J].In SPE annual technical conference and exhibition.OnePetro.
Google Scholar
|
Angulo R F, Alvarado V, Gonzalez H, 1992.Fractal dimensions from mercury intrusion capillary tests[C].In SPE Latin America Petroleum Engineering Conference.One Petro.
Google Scholar
|
Bagrintseva K I, 2015.Carbonate reservoir rocks[M].New York:John Wiley & Sons.
Google Scholar
|
Bansal A R, Gabriel G, Dimri V P, 2010.Power law distribution of susceptibility and density and its relation to seismic properties:An example from the German Continental Deep Drilling Program (KTB)[J].Journal of Applied Geophysics, 72(2):123-128.
Google Scholar
|
Bu H,Ju Y, Tan J, et al., 2015.Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China[J].Journal of Natural Gas Science and Engineering, 24, 166-177.
Google Scholar
|
Cai Y, Liu D, Pan Z, et al., 2016.Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis[J].Transport in Porous Media, 111(2):479-497.
Google Scholar
|
Daigle H, Thomas B, Rowe H, et al., 2014.Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333[J].Journal of Geophysical Research:Solid Earth, 119(4):2631-2650.
Google Scholar
|
Dutta T,Tarafdar S, 2003.Fractal pore structure of sedimentary rocks:Simulation by ballistic deposition[J].Journal of Geophysical Research:Solid Earth, 108(B2).
Google Scholar
|
Feranie S, Fauzi U, Bijaksana S, 2011.3D fractal dimension and flow properties in the pore structure of geological rocks[J].Fractals, 19(3):291-297.
Google Scholar
|
Ge X, Fan Y, Deng S, et al., 2016.An improvement of the fractal theory and its application in pore structure evaluation and permeability estimation[J].Journal of Geophysical Research:Solid Earth, 121(9):6333-6345.
Google Scholar
|
Katz A, Thompson A H, 1985.Fractal sandstone pores:Implications for conductivity and pore formation[J].Physical Review Letters, 54(12):1325.
Google Scholar
|
Krohn C E, 1988.Fractal measurements of sandstones, shales, and carbonates[J].Journal of Geophysical Research:Solid Earth, 93(B4):3297-3305.
Google Scholar
|
Krohn C E, 1988.Sandstone fractal and Euclidean pore volume distributions[J].Journal of Geophysical Research:Solid Earth, 93(B4):3286-3296.
Google Scholar
|
Kyle J R,Ketcham R A, 2015.Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing[J].Ore Geology Reviews, 65, 821-839.
Google Scholar
|
Lai J, Wang G, Fan Z, et al., 2017.Three-dimensional quantitative fracture analysis of tight gas sandstones using industrial computed tomography[J].Scientific Reports, 7(1):1-12.
Google Scholar
|
Lai J, Wang S, Wang G, et al., 2019.Pore structure and fractal characteristics of Ordovician Majiagou carbonate reservoirs in Ordos Basin, China[J].AAPG Bulletin, 103(11):2573-2596.
Google Scholar
|
Lai J, Wang G, 2015.Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J].Journal of Natural Gas Science and Engineering, 24:185-196.
Google Scholar
|
Li K, 2010.Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity[J].Journal of Petroleum Science and Engineering, 73(1-2):20-26.
Google Scholar
|
Li P, Zheng M, Bi H, et al., 2017.Pore throat structure and fractal characteristics of tight oil sandstone:a case study in the Ordos Basin, China[J].Journal of Petroleum Science and Engineering, 149, 665-674.
Google Scholar
|
Li Y H, Lu G Q, Rudolph V, 1999.Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J].Particle & Particle Systems Characterization:Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems, 16(1):25-31.
Google Scholar
|
Liang L,Xiong J, Liu X, 2015.An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis[J].Journal of Natural Gas Science and Engineering, 27:402-409.
Google Scholar
|
Liu X,Nie B, 2016.Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J].Fuel, 182:314-322.
Google Scholar
|
Lu H, Tang H, Wang M, et al., 2021.Pore structure characteristics and permeability prediction model in a cretaceous carbonate reservoir, North Persian Gulf Basin[J].Geofluids, DOI:10.1155/2021/8876679.
Google Scholar
|
Mandelbrot B B, Benoit B M, 1982.The fractal geometry of nature (Vol.1)[M].New York:WH freeman.
Google Scholar
|
Norbisrath J H, Eberli G P, Laurich B, et al., 2015.Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection[J].AAPG Bulletin, 99(11), 2077-2098.
Google Scholar
|
Sha F, Xiao L, Mao Z, et al., 2018.Petrophysical characterization and fractal analysis of carbonate reservoirs of the eastern margin of the pre-Caspian Basin[J].Energies, 12(1):78.
Google Scholar
|
Wan Y L, Lin J S, Zhao Z, et al., 2022.Origin of the dolomite in the Buqu Formation (Mid-Jurassic) in the south depression of the Qiangtang Basin, Tibet:Evidence from petrographic and geochemical constraints[J].Frontiers in Earth Science, doi:10.3389/feart.2022.944701.
Google Scholar
|
Wang F, Lian P, Jiao L, et al., 2018.Fractal analysis of microscale and nanoscale pore structures in carbonates using high-pressure mercury intrusion[J].Geofluids, 2018.
Google Scholar
|
Wang H, Liu Y, Song Y, et al., 2012.Fractal analysis and its impact factors on porestructure of artificial cores based on the images obtained using magnetic resonance imaging[J].Journal of Applied Geophysics, 86:70-81.
Google Scholar
|
Washburn E W, 1921.The dynamics of capillaryflow[J].Physical Review, 17(3):273.
Google Scholar
|
Weger R J, Eberli G P, Baechle G T, et al., 2009.Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J].AAPG Bulletin, 93(10):1297-1317.
Google Scholar
|
Xie S, Cheng Q, Ling Q, et al., 2010.Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs[J].Marine and Petroleum Geology, 27(2):476-485.
Google Scholar
|
Yao Y, Liu D, Tang D, et al., 2009.Fractal characterization of seepage-pores of coals from China:an investigation on permeability ofcoals[J].Computers & Geosciences, 35(6):1159-1166.
Google Scholar
|
Zhang Z, Weller A, 2014.Fractal dimension of pore-space geometry of an Eocene sandstone formation[J].Geophysics, 79(6):D377-D387.
Google Scholar
|
Zhu H,Zhong D, Zhang T, et al., 2018.Diagenetic controls on the reservoir quality of fine-grained "tight" sandstones:A case study based on NMR analysis[J].Energy & Fuels, 32(2):1612-1623.
Google Scholar
|
陈浩,陈明,孙伟,等,2018.羌塘盆地隆鄂尼-鄂斯玛古油藏中侏罗统布曲组岩相古地理研究[J].沉积与特提斯地质,38(2):74-81.
Google Scholar
|
陈明,孙伟,陈浩,等,2020.西藏南羌塘鄂斯玛地区中侏罗统布曲组沉积特征及油气地质意义[J].沉积与特提斯地质,40(3):96-101.
Google Scholar
|
陈昱林,曾焱,段永明,等,2018.川西龙门山前雷口坡组四段白云岩储层孔隙结构特征及储层分类[J].石油实验地质,40(5):621-631.
Google Scholar
|
邓虎成,周文,郭睿,等,2014.伊拉克艾哈代布油田中-下白垩统碳酸盐岩储层孔隙结构及控制因素[J].岩石学报,40(3):801-812.
Google Scholar
|
付修根,廖忠礼,刘建清,等,2007.南羌塘盆地扎仁地区中侏罗统布曲组沉积环境特征及其对油气地质条件的控制作用[J].中国地质,34(4):599-605.
Google Scholar
|
郭振华,李光辉,吴蕾,等,2011.碳酸盐岩储层孔隙结构评价方法——以土库曼斯坦阿姆河右岸气田为例[J].石油学报,32(3):459-465.
Google Scholar
|
何胜林,张海荣,马文宏,等,2017.常规测井评价复杂砂岩储层孔隙结构的方法与应用——以莺歌海盆地黄流组储层为例[J].地球物理学进展,32(6):2642-2649.
Google Scholar
|
季长军,陈程,吴珍汉,等,2000.羌塘盆地中侏罗统砂糖状白云岩流体包裹体碳-氧同位素分析及白云岩成因机制讨论[J].地质论评,66(5):1186-1198.
Google Scholar
|
李启来,高春文,伊海生,等,2013.羌塘盆地羌D2井布曲组碳酸盐岩储层特征研究[J].长江大学学报(自科版),10(32):20-22.
Google Scholar
|
李启来,伊海生,梁定勇,等,2014.羌塘盆地隆鄂尼-昂达尔错地区中侏罗统布曲组碳酸盐岩储层特征研究[J].科学技术与工程,14(31):183-188.
Google Scholar
|
李伟强,穆龙新,赵伦,等.2020.滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J].石油勘探与开发,47(5):958-971.
Google Scholar
|
刘建清,杨平,陈文彬,等,2010.羌塘盆地中央隆起带南侧隆鄂尼-昂达尔错布曲组古油藏白云岩特征及成因机制[J].地学前缘,17(1):312-321.
Google Scholar
|
牟传龙,2022.关于相的命名及其分类的建议[J].沉积与特提斯地质,42(3):331-339.DOI:10.19826/j.cnki.1009-3850.2022.03001.
Google Scholar
|
秦瑞宝,李雄炎,刘春成,等,2015.碳酸盐岩储层孔隙结构的影响因素与储层参数的定量评价[J].地学前缘,22(1):251-259.
Google Scholar
|
孙伟,陈明,万友利,等,2020.封闭系统中的白云石化作用过程及其油气地质意义——以南羌塘坳陷中侏罗统布曲组白云岩为例[J].地质论评,66(5):1217-1229.
Google Scholar
|
谭富文,张润合,王剑,等,2016.羌塘晚三叠世-早白垩世裂陷盆地基底构造[J].成都理工大学学报(自然科学版),43(5):513-521.
Google Scholar
|
万友利,王剑,付修根,等,2018a.羌塘盆地南部古油藏带布曲组白云岩地球化学特征及成因机制[J].成都理工大学学报(自然科学版),45(2):4-16.
Google Scholar
|
万友利,王剑,付修根,等,2018b.羌塘盆地南坳陷古油藏带中侏罗统布曲组白云岩元素地球化学特征及意义[J].沉积与特提斯地质,38(2):25-37.
Google Scholar
|
万友利,王剑,谭富文,等,2017.羌塘盆地隆鄂尼-昂达尔错地区布曲组白云岩储层成因及孔隙演化特征[J].东北石油大学学报,41(3):21-33.
Google Scholar
|
万友利,赵瞻,胡志中,等,2021.羌塘盆地中侏罗统布曲组白云岩有序度与晶胞参数的影响因素及地质意义[J].沉积与特提斯地质,41(4):512-523.
Google Scholar
|
万友利,王剑,付修根,等,2020.羌塘盆地南坳陷中侏罗统布曲组白云岩储层成因流体同位素地球化学示踪[J].石油与天然气地质,41(1):189-200.
Google Scholar
|
万云,詹俊,陶卉.2008.碳酸盐岩储层孔隙结构研究[J].油气田地面工程,27(12):13-14.
Google Scholar
|
王成善,伊海生,刘池洋,等,2004.西藏羌塘盆地古油藏发现及其意义[J].石油与天然气地质,25(2):139-143.
Google Scholar
|
王剑,付修根,沈利军,等,2020.论羌塘盆地油气勘探前景[J].地质论评,66(5):1091-1113.
Google Scholar
|
王琨,周航宇,赖杰,等,2020.核磁共振技术在岩石物理与孔隙结构表征中的应用[J].仪器仪表学报,41(2):101-114.
Google Scholar
|
王瑞飞,张祺,邵晓岩,等,2020.多尺度CT成像技术识别超低渗透砂岩储层纳米级孔喉[J].地球物理学进展,35(1):188-196.
Google Scholar
|
王伟,宋渊娟,黄静,等,2021.利用高压压汞实验研究致密砂岩孔喉结构分形特征[J].地质科技通报,40(4):22-30+48.
Google Scholar
|
王伟,朱玉双,余彩丽,等,2019.鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J].天然气地球科学,30(10):1439-1450.
Google Scholar
|
王羽珂,王剑,万友利,等,2017.南羌塘坳陷古油藏带布曲组白云岩储层特征及控制因素分析[J].沉积与特提斯地质,37(1):1-8.
Google Scholar
|
杨敬红,李雄炎,秦瑞宝,等,2013.碳酸盐岩储层孔喉结构和储层参数的分析与反演[J].地质科技情报,32(2):118-123.
Google Scholar
|
杨日红,李才,杨德明,等,2000.西藏羌塘盆地中生代构造岩相演化及油气远景[J].长春科技大学学报,30(3):237-242.
Google Scholar
|
伊海生,陈志勇,季长军,等,2014.羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据[J].岩石学报,30(3):737-782.
Google Scholar
|
伊海生,高春文,张小青,等,2004.羌塘盆地双湖地区古油藏白云岩储层的显微成岩组构特征及意义[J].成都理工大学学报(自然科学版),31(6):611-615.
Google Scholar
|
张立强,纪友亮,李永铁,等,2001.羌塘盆地侏罗系白云岩储层特征研究[J].石油实验地质,23(4):384-389.
Google Scholar
|