2023 Vol. 43, No. 4
Article Contents

BIAN Yaqian, FU Qiang, LIU Jinshui, MA Wenrui, ZHAO Shijie, QIN Tingting. 2023. Diagenesis and diagenetic evolution of Paleocene sandstone seservoirs in Lishui West Sag, East China Sea shelf basin. Sedimentary Geology and Tethyan Geology, 43(4): 688-701. doi: 10.19826/j.cnki.1009-3850.2022.05007
Citation: BIAN Yaqian, FU Qiang, LIU Jinshui, MA Wenrui, ZHAO Shijie, QIN Tingting. 2023. Diagenesis and diagenetic evolution of Paleocene sandstone seservoirs in Lishui West Sag, East China Sea shelf basin. Sedimentary Geology and Tethyan Geology, 43(4): 688-701. doi: 10.19826/j.cnki.1009-3850.2022.05007

Diagenesis and diagenetic evolution of Paleocene sandstone seservoirs in Lishui West Sag, East China Sea shelf basin

More Information
  • Many types of reservoirs are developed in Paleocene in Lishui West Sag, East China Sea shelf basin. Diagenesis, diagenetic evolution and pore evolution of Paleocene sandstone reservoirs in Lishui West Sag are studied by means of core slice identification, physical property testing, and carbon and oxygen isotope testing of four typical wells. The results show that: (1) the Paleocene sandstone reservoirs in Lishui West Sag are mainly composed of shallow sea delta facies medium and fine-grained lithic sandstone, with low compositional maturity and structural maturity. The mineral composition is mainly composed of lithic, followed by quartz and feldspar. (2) Sandstone experienced diagenesis such as mechanical compaction, cementation between carbonate rock and clay minerals, feldspar dissolution, etc. The carbonate cement of sandstone reservoir in the lower section of the Lingfeng Formation was formed in a freshwater diagenetic environment, while the carbonate cement of sandstone reservoir in the Mingyuefeng Formation and the upper section of the Lingfeng Formation was formed in a mixed water diagenetic environment, and the restored diagenetic temperature was between 76~141℃. (3) The sandstones in the lower member of Mingyuefeng Formation and the upper member of Lingfeng Formation of Paleocene are in early diagenetic stage B, and the sandstones in the lower member of Lingfeng Formation and Yueguifeng Formation are in middle diagenetic stage A. (4) Sandstone reservoirs have experienced pore evolution processes including compaction porosity reduction (−18.3%), early cementation porosity reduction (−3.9%), dissolution porosity increase (+4.8%) and late cementation porosity reduction (−6.7%). Each set of sandstone reservoirs has experienced differential diagenetic evolution processes, and diagenetic evolution types characterized by mechanical compaction, cementation between carbonate rock and clay minerals, and unstable clastic dissolution are developed respectively. Conventional high-quality reservoirs are developed in the lower member of Mingyuefeng Formation and the upper member of Lingfeng Formation. The sandstones of the lower member of Lingfeng Formation and Yueguifeng Formation are mainly exploring targets of unconventional, tight sandstone reservoirs, which are more difficult to explore. The research results are of great significance for in-depth understanding of Paleocene sandstone reservoirs in Lishui West Sag and guiding oil and gas exploration.

  • 加载中
  • [1] Bjorlykke K, Jahren J, 2012. Open or closed geochemicalsystems during diagenesis in sedimentary basins: Constraintson mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 96(12): 2193-2214. doi: 10.1306/04301211139

    CrossRef Google Scholar

    [2] Curtis C D, 1978. Possible links between sandstone diagenesis and depth-related geochemical reactions occurring in enclosing mudstones[J]. Journal of the Geological Society, 135(1): 107 − 117. https://doi.org/10.1144/gsjgs.135.1.0107

    Google Scholar

    [3] FisherJ B, Boles J R, 1990. Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: Diageneticcontrols on water composition[J]. Chemical Geology, 82: 83-101. doi: 10.1016/0009-2541(90)90076-J

    CrossRef Google Scholar

    [4] Folk R. L. , Andrews P. B. & Lewis D. W, 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. N. Z. J [J]. Geol. Geophys, 13: 937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    [5] Houseknecht D W, 1983. Probability of encountering coalbed discontinuities during vertical and horizontal borehole drilling : US Bureau of Mines report RI 8665, 1982, 21P[J]. lnternational journal of RockMechanics and Mining Sciences &Geomechanics Abstracts, 20(1): 25-26.

    Google Scholar

    [6] JinkaiWang, JinliangZhang, WenlongShen, 2021. Comparison of the PoreStructure of Ultralow-Permeability Reservoirs Between the East and West Subsags of the Lishui Sag Using Constant-Rate Mercury Injection[J]. Journal of Ocean University of China, 20(2): 315-328. doi: 10.1007/s11802-021-4460-6

    CrossRef Google Scholar

    [7] Kaufman A J, Knoll A H, 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and bio⁃geochemical implications[J]. Precambrian Research, 73 (1-4): 49.

    Google Scholar

    [8] Keith M L and Weber J N, 1964. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 28(10/11): 1787-1816.

    Google Scholar

    [9] K. Wallmann, 2001. The geological water cycle and the evolution of marine δ18O values[J]. Geochimica et Cosmochimica Acta, 65(15): 2469-2485. doi: 10.1016/S0016-7037(01)00603-2

    CrossRef Google Scholar

    [10] Nader F H, Champenois F, BarbierM, et al. , 2016. Diagenetic effects of compaction on reservoir properties: The case of early callovian“DalleNacrée”formation(Paris basin, France) [J]. Journal of Geodynamics, 101(11): 5-29.

    Google Scholar

    [11] Urey, H C, 1947. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 562-581. doi: 10.1039/jr9470000562

    CrossRef Google Scholar

    [12] Yang L L, Xu T F, Liu K Y, et al., Fluid-rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity[J]. Sedimentology, 2017,64(5):1303-1321.

    Google Scholar

    [13] Zhao S J , Fu Q, et al., Pore-Throat Size Distribution and Classification of the Paleogene Tight Sandstone in Lishui Sag, East China Sea Shelf Basin, China[J].Energy & Fuels, 2021,35(1):290-305.

    Google Scholar

    [14] Veizer J, Ala D, Azmy K, et al. , 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 161(1/2/3): 59-88.

    Google Scholar

    [15] 陈志勇, 吴培康, 吴志轩, 2000. 丽水凹陷石油地质特征及勘探前景[J]. 中国海上油气地质, 30(06): 19-26

    Google Scholar

    Chen Z Y, Wu P K, Wu Z X, 2000. Petroleum geological characteristics and exploration prospects of Lishui depression [J]. Offshore Oil and Gas Geology of China, 30(06): 19-26

    Google Scholar

    [16] 蔡坤, 徐东浩, 袁悦, 等. 2020. 东海丽水凹陷西次凹明月峰组海底扇沉积特征及沉积模式[J]. 海洋地质与第四纪地质, 40(1): 22-30

    Google Scholar

    Cai K, Xu D H, Yuan Y, et al. 2020. Sedimentary characteristics and depositional model of submarine fan in Mingyuefeng Formation, West sub sag, Lishui sag, East China Sea [J]. Marine Geology and Quaternary Geology, 40(1): 22-30 (in Chinese with English abstract).

    Google Scholar

    [17] 代静静, 罗静兰, 何贤英, 等, 2020. 准噶尔盆地西泉地区石炭系火山熔岩油气储层特征及成岩演化过程研究[J]. 中国地质, 47(03): 742-754

    Google Scholar

    Dai J J, Luo J L, He X Y, et al. , 2020. Study on hydrocarbon reservoir characteristics and diagenetic evolution process of Carboniferous volcanic lava in Xiquan area of Junggar Basin [J]. Geology of China, 47(03): 742-754.

    Google Scholar

    [18] 郭永华, 于水, 葛玲, 2003. 东海盆地丽水凹陷LS36-1构造成藏机理研究[J]. 石油勘探与开发, 30 (06): 29-31 doi: 10.3321/j.issn:1000-0747.2003.06.008

    CrossRef Google Scholar

    Guo Y H, Yu S, Ge L, 2003. Study on reservoir forming mechanism of ls36-1 structure in Lishui sag, East China Sea Basin[J]. Petroleum Exploration and Development, 30 (06): 29-31. doi: 10.3321/j.issn:1000-0747.2003.06.008

    CrossRef Google Scholar

    [19] 胡贺伟, 李慧勇, 于海波, 等, 2020. 渤海湾盆地埕北低凸起及围区古近系“源-汇”系统控砂原理定量分析[J]. 古地理学报, 22(2): 266-277 doi: 10.7605/gdlxb.2020.10.238

    CrossRef Google Scholar

    Hu H Wi, Li H Y, Yu H B, et al. , 2020. Quantitative analysis of sand control principle of Paleogene "source sink" system in Chengbei low uplift and surrounding area of Bohai Bay Basin [J]. Journal of Paleogeography, 22(2): 266-277. doi: 10.7605/gdlxb.2020.10.238

    CrossRef Google Scholar

    [20] 兰叶芳, 黄思静, 马永坤, 等, 2016. 珠江口盆地珠江组碳酸盐岩碳同位素组成负偏的成因意义[J]. 地质论评, 62(04): 915-928

    Google Scholar

    Lan Y F, Huang S J, Ma Y K, et al. , 2016. Genetic significance of negative carbon isotope composition of carbonate rocks in the Zhujiang Formation of the Pearl River Mouth Basin [J]. Geological Review, 62(04): 915-928.

    Google Scholar

    [21] 李杪, 侯云东, 罗静兰, 等, 2016. 致密砂岩储层埋藏—成岩—油气充注演化过程与孔隙演化定量分析: 以鄂尔多斯盆地东部上古生界盒8 段天然气储层为例[J]. 石油与天然气地质, 37(6): 882-892 doi: 10.11743/ogg20160610

    CrossRef Google Scholar

    Li Z, Hou Y D, Luo J L, et al. , 2016. Quantitative analysis of burial diagenesis oil and gas filling evolution process and pore evolution of tight sandstone reservoir: Taking the natural gas reservoir of He8 member of Upper Paleozoic in the eastern Ordos Basin as an example [J]. Oil and Gas Geology, 37(6): 882-892. doi: 10.11743/ogg20160610

    CrossRef Google Scholar

    [22] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 39(4): 402-415

    Google Scholar

    Li W, He S, Zhang B Q, et al., 2018.Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline [J].Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract).

    Google Scholar

    [23] 梁建设, 田兵, 王琪, 等, 2012. 丽水—椒江凹陷月桂峰组地震—沉积响应及烃源岩特征[J]. 天然气地球科学, 23(03): 482-488

    Google Scholar

    Liang J S, Tian B, Wang Q, et al. , 2012. Seismic sedimentary response and source rock characteristics of yueguifeng formation in Lishui Jiaojiang depression [J]. Natural Gas Geoscience, 23(03): 482-488.

    Google Scholar

    [24] 刘欢, 许长海, 申雯龙, 等, 2021. 东海陆架盆地丽水凹陷构造演化特征[J]. 石油实验地质, 43(6): 949-957 doi: 10.11781/sysydz202106949

    CrossRef Google Scholar

    Liu H, Xu C H, Shen W L, et al. , 2021. Structural evolution characteristics of Lishui sag in the East China Sea shelf basin [J]. Petroleum Experimental Geology, 43(6): 949-957. doi: 10.11781/sysydz202106949

    CrossRef Google Scholar

    [25] 孟康, 金敏波, 吴保祥, 2019. 鄂尔多斯盆地马岭油田侏罗系延安组储层特征研究[J]. 沉积与特提斯地质, 39(03): 73-83 doi: 10.3969/j.issn.1009-3850.2019.03.009

    CrossRef Google Scholar

    Meng K, Jin M B, Wu B X, 2019. Study on reservoir characteristics of Jurassic Yan'an formation in Maling oilfield, Ordos Basin [J]. Sedimentation and Tethys Geology, 39(03): 73-83. doi: 10.3969/j.issn.1009-3850.2019.03.009

    CrossRef Google Scholar

    [26] 牟传龙. 2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质, 42(3):331-339.

    Google Scholar

    Mou C L. 2022. Suggested naming and classification of the word facies [J]. Sedimentary Geology and Tethyan Geology, 42(3):331-339 (in Chinese with English abstract).

    Google Scholar

    [27] 宁括步, 毛世东, 梁龙飞, 等, 2018. 川西甘孜-理塘结合带碳酸盐岩碳氧同位素特征[J]. 沉积与特提斯地质, 38(03): 106-112 doi: 10.3969/j.issn.1009-3850.2018.03.012

    CrossRef Google Scholar

    Ning K B, Mao S D, Liang L Fi, et al. , 2018. Carbon and oxygen isotope characteristics of carbonate rocks in Ganzi Litang junction zone in Western Sichuan [J]. Sedimentation and Tethys Geology, 38(03): 106-112. doi: 10.3969/j.issn.1009-3850.2018.03.012

    CrossRef Google Scholar

    [28] 牛斌, 魏璞, 张顺存, 等, 2017. 准噶尔盆地石西地区侏罗系八道湾组储层特征及主控因素分析[J]. 沉积与特提斯地质, 37(02): 77-87 doi: 10.3969/j.issn.1009-3850.2017.02.009

    CrossRef Google Scholar

    Niu B, Wei P, Zhang S C, et al. , 2017. Reservoir characteristics and main controlling factors of Jurassic Badaowan Formation in Shixi area of Junggar Basin [J]. Sedimentation and Tethys Geology, 37(02): 77-87. doi: 10.3969/j.issn.1009-3850.2017.02.009

    CrossRef Google Scholar

    [29] 牛杏, 何云龙, 庄新国, 2021. 东海盆地丽水凹陷CO2分布特征及成藏主控因素[J]. 地球科学, 46(10): 3549-3559

    Google Scholar

    Niu X, He Y L, Zhuang X G, 2021. Distribution and major controlling factors of CO2 reservoirs in Lishui Sag, East China Sea Basin[J]. Earth Science, 46(10): 3549−3559 (in Chinese with English abstract).

    Google Scholar

    [30] 苏奥, 陈红汉, 曹来圣, 等, 2014. 东海盆地丽水凹陷油气成因、来源及充注过程[J]. 石油勘探与开发, 41(05): 523-532

    Google Scholar

    Su A, Chen H H, Cao L S, et al. , 2014. Origin, source and filling process of oil and gas in Lishui sag, East China Sea Basin[J]. Petroleum Exploration and Development, 41(05): 523-532.

    Google Scholar

    [31] 田杨, 叶加仁, 雷闯, 2016. 东海陆架盆地丽水—椒江凹陷月桂峰组烃源岩发育控制因素及形成模式[J]. 地球科学, 41(09): 1561-1571

    Google Scholar

    Tian Y, Ye J R, Lei C, 2016. Control factors and formation mode of yueguifeng formation hydrocarbon source rocks in Lishui Jiaojiang sag, East China Sea shelf basin [J]. Geoscience, 41(09): 1561-1571.

    Google Scholar

    [32] 田兵, 李小燕, 庞国印, 等, 2012. 叠合断陷盆地沉积体系分析——以东海丽水—椒江凹陷为例[J]. 沉积学报, 2012, 30(04): 696-705

    Google Scholar

    Tian B, Li X Y, Pang G Y, et al. , 2012. Analysis of sedimentary system of superimposed faulted basins -- Taking Lishui Jiaojiang sag in the East China Sea as an example [J]. Journal of Sedimentation, 2012, 30(04): 696-705.

    Google Scholar

    [33] 王大锐, 2000. 油气稳定同位素地球化学[M]. 北京: 地质出版社.

    Google Scholar

    Wang D R, 2000. Stable isotope geochemistry of oil and gas[M]. Beijing: Geological Publishing House

    Google Scholar

    [34] 杨平, 陈杨, 冯伟明, 等. 2021.西昌盆地白果湾组致密砂岩油气形成关键指标评价与有利区优选[J]. 沉积与特提斯地质, 41(3): 454−464

    Google Scholar

    Yang P, Chen Y, Feng W M, et al., 2021. Key indexes for hydrocarbon formation of tight sandstones and favorable areas of Baiguowan Formation in Xichang Basin[J] .Sedimentary Geology and Tethyan Geology, 41 (3): 454-464 (in Chinese with English abstract).

    Google Scholar

    [35] 杨平, 刘家洪, 杨菲, 等. 2018. 黔北灯影组自生石英流体包裹体特征及油气成藏演化[J]. 沉积与特提斯地质, 38 (2): 82-93

    Google Scholar

    Yang P, Liu J H, Yang Fei, et al., 2018. Fluid inclusions in authigenic quartz and hydrocarbon accumulation in the Dengying Formation in Renhuai,northern Guizhou [J]. Sedimentary Geology and Tethyan Geology, 38 (2): 82-93 (in Chinese with English abstract).

    Google Scholar

    [36] 殷世艳, 何生, 雷闯, 等, 2014. 东海陆架盆地丽水一椒江凹陷月桂峰组烃源岩特征及生排烃史[J]. 海洋地质前沿, 30(8): 35-41, 65

    Google Scholar

    Yin S Y, He S, Lei C, et al. , 2014. Source rock characteristics and hydrocarbon generation and expulsion history of yueguifeng formation in Lishui Jiaojiang sag, East China Sea shelf basin [J]. Marine Geological Front, 30 (8): 35-41, 65

    Google Scholar

    [37] 张敏强, 黄思静, 吴志轩, 2007. 东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J]. 成都理工大学学报(自然科学版), 34(3): 259-266 doi: 10.3969/j.issn.1671-9727.2007.03.007

    CrossRef Google Scholar

    Zhang M Q, Huang S J, Wu Z X, 2007. Carbonate cements and their formation mechanism in Paleogene reservoir sandstones in Lishui sag, East China Sea Basin [J]. Journal of Chengdu University of Technology (NATURAL SCIENCE EDITION), 34 (3): 259-266 doi: 10.3969/j.issn.1671-9727.2007.03.007

    CrossRef Google Scholar

    [38] 张武等, 2020. 丽水凹陷西凹中部储层致密成因及优质储层主控因素[J]. 长江大学学报(自然科学版), 17(03): 14-20+4-5

    Google Scholar

    Zhang W et al. , 2020. The formation of tight reservoirs and the main controlling factors of high-quality reservoirs in the middle of the West Sag of Lishui depression [J]. Journal of Changjiang University (NATURAL SCIENCE EDITION), 17 (03): 14-20+4-5

    Google Scholar

    [39] 张振宇, 张立宽, 罗晓容, 等, 2019. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示[J]. 天然气地球科学, 30(5): 686-700 doi: 10.11764/j.issn.1672-1926.2019.04.002

    CrossRef Google Scholar

    Zhang Z Y, Zhang L K, Luo X R, et al. , 2019. Diagenesis of deep Xishanyao Formation sandstone in the central Junggar Basin and Its Enlightenment on reservoir quality evaluation [J]. Natural Gas Geoscience, 30 (5): 686-700 doi: 10.11764/j.issn.1672-1926.2019.04.002

    CrossRef Google Scholar

    [40] 赵燚林, 马遵青, 陈国俊, 等, 2019. 琼东南盆地松南-宝岛凹陷梅山组碎屑岩储集性及成岩作用研究[J]. 沉积与特提斯地质, 39(04): 14-26 doi: 10.3969/j.issn.1009-3850.2019.04.002

    CrossRef Google Scholar

    Zhao Y L, Ma Z Q, Chen G J, et al. , 2019. Study on clastic reservoir and diagenesis of Meishan formation in Songnan Baodao sag, Qiongdongnan Basin [J]. Sedimentation and Tethys Geology, 39 (04): 14-26 doi: 10.3969/j.issn.1009-3850.2019.04.002

    CrossRef Google Scholar

    [41] 周根陶, 郑永飞, 2000. 碳酸钙-水体系氧同位素分馏系数的低温实验研究[J]. 地学前缘, 7(2): 321-338 doi: 10.3321/j.issn:1005-2321.2000.02.002

    CrossRef Google Scholar

    Zhou G T, Zheng Y F, 2000. Low temperature experimental study on oxygen isotope fractionation coefficient of calcium carbonate water system[J]. Geoscience Frontier, 7(2): 321-338 doi: 10.3321/j.issn:1005-2321.2000.02.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(862) PDF downloads(241) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint